mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-04-24 02:29:33 +08:00
186 lines
5.2 KiB
C++
186 lines
5.2 KiB
C++
|
|
// g++ -O3 -g0 -DNDEBUG sparse_product.cpp -I.. -I/home/gael/Coding/LinearAlgebra/mtl4/ -DDENSITY=0.005 -DSIZE=10000 &&
|
|
// ./a.out g++ -O3 -g0 -DNDEBUG sparse_product.cpp -I.. -I/home/gael/Coding/LinearAlgebra/mtl4/ -DDENSITY=0.05
|
|
// -DSIZE=2000 && ./a.out
|
|
// -DNOGMM -DNOMTL -DCSPARSE
|
|
// -I /home/gael/Coding/LinearAlgebra/CSparse/Include/ /home/gael/Coding/LinearAlgebra/CSparse/Lib/libcsparse.a
|
|
#ifndef SIZE
|
|
#define SIZE 650000
|
|
#endif
|
|
|
|
#ifndef DENSITY
|
|
#define DENSITY 0.01
|
|
#endif
|
|
|
|
#ifndef REPEAT
|
|
#define REPEAT 1
|
|
#endif
|
|
|
|
#include "BenchSparseUtil.h"
|
|
|
|
#ifndef MINDENSITY
|
|
#define MINDENSITY 0.0004
|
|
#endif
|
|
|
|
#ifndef NBTRIES
|
|
#define NBTRIES 10
|
|
#endif
|
|
|
|
#define BENCH(X) \
|
|
timer.reset(); \
|
|
for (int _j = 0; _j < NBTRIES; ++_j) { \
|
|
timer.start(); \
|
|
for (int _k = 0; _k < REPEAT; ++_k) { \
|
|
X \
|
|
} \
|
|
timer.stop(); \
|
|
}
|
|
|
|
#ifdef CSPARSE
|
|
cs* cs_sorted_multiply(const cs* a, const cs* b) {
|
|
cs* A = cs_transpose(a, 1);
|
|
cs* B = cs_transpose(b, 1);
|
|
cs* D = cs_multiply(B, A); /* D = B'*A' */
|
|
cs_spfree(A);
|
|
cs_spfree(B);
|
|
cs_dropzeros(D); /* drop zeros from D */
|
|
cs* C = cs_transpose(D, 1); /* C = D', so that C is sorted */
|
|
cs_spfree(D);
|
|
return C;
|
|
}
|
|
#endif
|
|
|
|
int main(int argc, char* argv[]) {
|
|
int rows = SIZE;
|
|
int cols = SIZE;
|
|
float density = DENSITY;
|
|
|
|
EigenSparseMatrix sm1(rows, cols);
|
|
DenseVector v1(cols), v2(cols);
|
|
v1.setRandom();
|
|
|
|
BenchTimer timer;
|
|
for (float density = DENSITY; density >= MINDENSITY; density *= 0.5) {
|
|
// fillMatrix(density, rows, cols, sm1);
|
|
fillMatrix2(7, rows, cols, sm1);
|
|
|
|
// dense matrices
|
|
#ifdef DENSEMATRIX
|
|
{
|
|
std::cout << "Eigen Dense\t" << density * 100 << "%\n";
|
|
DenseMatrix m1(rows, cols);
|
|
eiToDense(sm1, m1);
|
|
|
|
timer.reset();
|
|
timer.start();
|
|
for (int k = 0; k < REPEAT; ++k) v2 = m1 * v1;
|
|
timer.stop();
|
|
std::cout << " a * v:\t" << timer.best() << " " << double(REPEAT) / timer.best() << " * / sec " << endl;
|
|
|
|
timer.reset();
|
|
timer.start();
|
|
for (int k = 0; k < REPEAT; ++k) v2 = m1.transpose() * v1;
|
|
timer.stop();
|
|
std::cout << " a' * v:\t" << timer.best() << endl;
|
|
}
|
|
#endif
|
|
|
|
// eigen sparse matrices
|
|
{
|
|
std::cout << "Eigen sparse\t" << sm1.nonZeros() / float(sm1.rows() * sm1.cols()) * 100 << "%\n";
|
|
|
|
BENCH(asm("#myc"); v2 = sm1 * v1; asm("#myd");)
|
|
std::cout << " a * v:\t" << timer.best() / REPEAT << " " << double(REPEAT) / timer.best(REAL_TIMER)
|
|
<< " * / sec " << endl;
|
|
|
|
BENCH({
|
|
asm("#mya");
|
|
v2 = sm1.transpose() * v1;
|
|
asm("#myb");
|
|
})
|
|
|
|
std::cout << " a' * v:\t" << timer.best() / REPEAT << endl;
|
|
}
|
|
|
|
// {
|
|
// DynamicSparseMatrix<Scalar> m1(sm1);
|
|
// std::cout << "Eigen dyn-sparse\t" << m1.nonZeros()/float(m1.rows()*m1.cols())*100 << "%\n";
|
|
//
|
|
// BENCH(for (int k=0; k<REPEAT; ++k) v2 = m1 * v1;)
|
|
// std::cout << " a * v:\t" << timer.value() << endl;
|
|
//
|
|
// BENCH(for (int k=0; k<REPEAT; ++k) v2 = m1.transpose() * v1;)
|
|
// std::cout << " a' * v:\t" << timer.value() << endl;
|
|
// }
|
|
|
|
// GMM++
|
|
#ifndef NOGMM
|
|
{
|
|
std::cout << "GMM++ sparse\t" << density * 100 << "%\n";
|
|
// GmmDynSparse gmmT3(rows,cols);
|
|
GmmSparse m1(rows, cols);
|
|
eiToGmm(sm1, m1);
|
|
|
|
std::vector<Scalar> gmmV1(cols), gmmV2(cols);
|
|
Map<Matrix<Scalar, Dynamic, 1> >(&gmmV1[0], cols) = v1;
|
|
Map<Matrix<Scalar, Dynamic, 1> >(&gmmV2[0], cols) = v2;
|
|
|
|
BENCH(asm("#myx"); gmm::mult(m1, gmmV1, gmmV2); asm("#myy");)
|
|
std::cout << " a * v:\t" << timer.value() << endl;
|
|
|
|
BENCH(gmm::mult(gmm::transposed(m1), gmmV1, gmmV2);)
|
|
std::cout << " a' * v:\t" << timer.value() << endl;
|
|
}
|
|
#endif
|
|
|
|
#ifndef NOUBLAS
|
|
{
|
|
std::cout << "ublas sparse\t" << density * 100 << "%\n";
|
|
UBlasSparse m1(rows, cols);
|
|
eiToUblas(sm1, m1);
|
|
|
|
boost::numeric::ublas::vector<Scalar> uv1, uv2;
|
|
eiToUblasVec(v1, uv1);
|
|
eiToUblasVec(v2, uv2);
|
|
|
|
// std::vector<Scalar> gmmV1(cols), gmmV2(cols);
|
|
// Map<Matrix<Scalar,Dynamic,1> >(&gmmV1[0], cols) = v1;
|
|
// Map<Matrix<Scalar,Dynamic,1> >(&gmmV2[0], cols) = v2;
|
|
|
|
BENCH(uv2 = boost::numeric::ublas::prod(m1, uv1);)
|
|
std::cout << " a * v:\t" << timer.value() << endl;
|
|
|
|
// BENCH( boost::ublas::prod(gmm::transposed(m1), gmmV1, gmmV2); )
|
|
// std::cout << " a' * v:\t" << timer.value() << endl;
|
|
}
|
|
#endif
|
|
|
|
// MTL4
|
|
#ifndef NOMTL
|
|
{
|
|
std::cout << "MTL4\t" << density * 100 << "%\n";
|
|
MtlSparse m1(rows, cols);
|
|
eiToMtl(sm1, m1);
|
|
mtl::dense_vector<Scalar> mtlV1(cols, 1.0);
|
|
mtl::dense_vector<Scalar> mtlV2(cols, 1.0);
|
|
|
|
timer.reset();
|
|
timer.start();
|
|
for (int k = 0; k < REPEAT; ++k) mtlV2 = m1 * mtlV1;
|
|
timer.stop();
|
|
std::cout << " a * v:\t" << timer.value() << endl;
|
|
|
|
timer.reset();
|
|
timer.start();
|
|
for (int k = 0; k < REPEAT; ++k) mtlV2 = trans(m1) * mtlV1;
|
|
timer.stop();
|
|
std::cout << " a' * v:\t" << timer.value() << endl;
|
|
}
|
|
#endif
|
|
|
|
std::cout << "\n\n";
|
|
}
|
|
|
|
return 0;
|
|
}
|