mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-04-24 02:29:33 +08:00
441 lines
13 KiB
C++
441 lines
13 KiB
C++
|
|
// g++ -O3 -g0 -DNDEBUG sparse_product.cpp -I.. -I/home/gael/Coding/LinearAlgebra/mtl4/ -DDENSITY=0.005 -DSIZE=10000 &&
|
|
// ./a.out g++ -O3 -g0 -DNDEBUG sparse_product.cpp -I.. -I/home/gael/Coding/LinearAlgebra/mtl4/ -DDENSITY=0.05
|
|
// -DSIZE=2000 && ./a.out
|
|
// -DNOGMM -DNOMTL -DCSPARSE
|
|
// -I /home/gael/Coding/LinearAlgebra/CSparse/Include/ /home/gael/Coding/LinearAlgebra/CSparse/Lib/libcsparse.a
|
|
#ifndef SIZE
|
|
#define SIZE 100000
|
|
#endif
|
|
|
|
#ifndef NBPERROW
|
|
#define NBPERROW 24
|
|
#endif
|
|
|
|
#ifndef REPEAT
|
|
#define REPEAT 2
|
|
#endif
|
|
|
|
#ifndef NBTRIES
|
|
#define NBTRIES 2
|
|
#endif
|
|
|
|
#ifndef KK
|
|
#define KK 10
|
|
#endif
|
|
|
|
#ifndef NOGOOGLE
|
|
#define EIGEN_GOOGLEHASH_SUPPORT
|
|
#include <google/sparse_hash_map>
|
|
#endif
|
|
|
|
#include "BenchSparseUtil.h"
|
|
|
|
#define CHECK_MEM
|
|
// #define CHECK_MEM std/**/::cout << "check mem\n"; getchar();
|
|
|
|
#define BENCH(X) \
|
|
timer.reset(); \
|
|
for (int _j = 0; _j < NBTRIES; ++_j) { \
|
|
timer.start(); \
|
|
for (int _k = 0; _k < REPEAT; ++_k) { \
|
|
X \
|
|
} \
|
|
timer.stop(); \
|
|
}
|
|
|
|
typedef std::vector<Vector2i> Coordinates;
|
|
typedef std::vector<float> Values;
|
|
|
|
EIGEN_DONT_INLINE Scalar* setinnerrand_eigen(const Coordinates& coords, const Values& vals);
|
|
EIGEN_DONT_INLINE Scalar* setrand_eigen_dynamic(const Coordinates& coords, const Values& vals);
|
|
EIGEN_DONT_INLINE Scalar* setrand_eigen_compact(const Coordinates& coords, const Values& vals);
|
|
EIGEN_DONT_INLINE Scalar* setrand_eigen_sumeq(const Coordinates& coords, const Values& vals);
|
|
EIGEN_DONT_INLINE Scalar* setrand_eigen_gnu_hash(const Coordinates& coords, const Values& vals);
|
|
EIGEN_DONT_INLINE Scalar* setrand_eigen_google_dense(const Coordinates& coords, const Values& vals);
|
|
EIGEN_DONT_INLINE Scalar* setrand_eigen_google_sparse(const Coordinates& coords, const Values& vals);
|
|
EIGEN_DONT_INLINE Scalar* setrand_scipy(const Coordinates& coords, const Values& vals);
|
|
EIGEN_DONT_INLINE Scalar* setrand_ublas_mapped(const Coordinates& coords, const Values& vals);
|
|
EIGEN_DONT_INLINE Scalar* setrand_ublas_coord(const Coordinates& coords, const Values& vals);
|
|
EIGEN_DONT_INLINE Scalar* setrand_ublas_compressed(const Coordinates& coords, const Values& vals);
|
|
EIGEN_DONT_INLINE Scalar* setrand_ublas_genvec(const Coordinates& coords, const Values& vals);
|
|
EIGEN_DONT_INLINE Scalar* setrand_mtl(const Coordinates& coords, const Values& vals);
|
|
|
|
int main(int argc, char* argv[]) {
|
|
int rows = SIZE;
|
|
int cols = SIZE;
|
|
bool fullyrand = true;
|
|
|
|
BenchTimer timer;
|
|
Coordinates coords;
|
|
Values values;
|
|
if (fullyrand) {
|
|
Coordinates pool;
|
|
pool.reserve(cols * NBPERROW);
|
|
std::cerr << "fill pool"
|
|
<< "\n";
|
|
for (int i = 0; i < cols * NBPERROW;) {
|
|
// DynamicSparseMatrix<int> stencil(SIZE,SIZE);
|
|
Vector2i ij(internal::random<int>(0, rows - 1), internal::random<int>(0, cols - 1));
|
|
// if(stencil.coeffRef(ij.x(), ij.y())==0)
|
|
{
|
|
// stencil.coeffRef(ij.x(), ij.y()) = 1;
|
|
pool.push_back(ij);
|
|
}
|
|
++i;
|
|
}
|
|
std::cerr << "pool ok"
|
|
<< "\n";
|
|
int n = cols * NBPERROW * KK;
|
|
coords.reserve(n);
|
|
values.reserve(n);
|
|
for (int i = 0; i < n; ++i) {
|
|
int i = internal::random<int>(0, pool.size());
|
|
coords.push_back(pool[i]);
|
|
values.push_back(internal::random<Scalar>());
|
|
}
|
|
} else {
|
|
for (int j = 0; j < cols; ++j)
|
|
for (int i = 0; i < NBPERROW; ++i) {
|
|
coords.push_back(Vector2i(internal::random<int>(0, rows - 1), j));
|
|
values.push_back(internal::random<Scalar>());
|
|
}
|
|
}
|
|
std::cout << "nnz = " << coords.size() << "\n";
|
|
CHECK_MEM
|
|
// dense matrices
|
|
#ifdef DENSEMATRIX
|
|
{
|
|
BENCH(setrand_eigen_dense(coords, values);)
|
|
std::cout << "Eigen Dense\t" << timer.value() << "\n";
|
|
}
|
|
#endif
|
|
|
|
// eigen sparse matrices
|
|
// if (!fullyrand)
|
|
// {
|
|
// BENCH(setinnerrand_eigen(coords,values);)
|
|
// std::cout << "Eigen fillrand\t" << timer.value() << "\n";
|
|
// }
|
|
{
|
|
BENCH(setrand_eigen_dynamic(coords, values);)
|
|
std::cout << "Eigen dynamic\t" << timer.value() << "\n";
|
|
}
|
|
// {
|
|
// BENCH(setrand_eigen_compact(coords,values);)
|
|
// std::cout << "Eigen compact\t" << timer.value() << "\n";
|
|
// }
|
|
{
|
|
BENCH(setrand_eigen_sumeq(coords, values);)
|
|
std::cout << "Eigen sumeq\t" << timer.value() << "\n";
|
|
}
|
|
{
|
|
// BENCH(setrand_eigen_gnu_hash(coords,values);)
|
|
// std::cout << "Eigen std::map\t" << timer.value() << "\n";
|
|
}
|
|
{
|
|
BENCH(setrand_scipy(coords, values);)
|
|
std::cout << "scipy\t" << timer.value() << "\n";
|
|
}
|
|
#ifndef NOGOOGLE
|
|
{
|
|
BENCH(setrand_eigen_google_dense(coords, values);)
|
|
std::cout << "Eigen google dense\t" << timer.value() << "\n";
|
|
}
|
|
{
|
|
BENCH(setrand_eigen_google_sparse(coords, values);)
|
|
std::cout << "Eigen google sparse\t" << timer.value() << "\n";
|
|
}
|
|
#endif
|
|
|
|
#ifndef NOUBLAS
|
|
{
|
|
// BENCH(setrand_ublas_mapped(coords,values);)
|
|
// std::cout << "ublas mapped\t" << timer.value() << "\n";
|
|
} {
|
|
BENCH(setrand_ublas_genvec(coords, values);)
|
|
std::cout << "ublas vecofvec\t" << timer.value() << "\n";
|
|
}
|
|
/*{
|
|
timer.reset();
|
|
timer.start();
|
|
for (int k=0; k<REPEAT; ++k)
|
|
setrand_ublas_compressed(coords,values);
|
|
timer.stop();
|
|
std::cout << "ublas comp\t" << timer.value() << "\n";
|
|
}
|
|
{
|
|
timer.reset();
|
|
timer.start();
|
|
for (int k=0; k<REPEAT; ++k)
|
|
setrand_ublas_coord(coords,values);
|
|
timer.stop();
|
|
std::cout << "ublas coord\t" << timer.value() << "\n";
|
|
}*/
|
|
#endif
|
|
|
|
// MTL4
|
|
#ifndef NOMTL
|
|
{
|
|
BENCH(setrand_mtl(coords, values));
|
|
std::cout << "MTL\t" << timer.value() << "\n";
|
|
}
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
EIGEN_DONT_INLINE Scalar* setinnerrand_eigen(const Coordinates& coords, const Values& vals) {
|
|
using namespace Eigen;
|
|
SparseMatrix<Scalar> mat(SIZE, SIZE);
|
|
// mat.startFill(2000000/*coords.size()*/);
|
|
for (int i = 0; i < coords.size(); ++i) {
|
|
mat.insert(coords[i].x(), coords[i].y()) = vals[i];
|
|
}
|
|
mat.finalize();
|
|
CHECK_MEM;
|
|
return 0;
|
|
}
|
|
|
|
EIGEN_DONT_INLINE Scalar* setrand_eigen_dynamic(const Coordinates& coords, const Values& vals) {
|
|
using namespace Eigen;
|
|
DynamicSparseMatrix<Scalar> mat(SIZE, SIZE);
|
|
mat.reserve(coords.size() / 10);
|
|
for (int i = 0; i < coords.size(); ++i) {
|
|
mat.coeffRef(coords[i].x(), coords[i].y()) += vals[i];
|
|
}
|
|
mat.finalize();
|
|
CHECK_MEM;
|
|
return &mat.coeffRef(coords[0].x(), coords[0].y());
|
|
}
|
|
|
|
EIGEN_DONT_INLINE Scalar* setrand_eigen_sumeq(const Coordinates& coords, const Values& vals) {
|
|
using namespace Eigen;
|
|
int n = coords.size() / KK;
|
|
DynamicSparseMatrix<Scalar> mat(SIZE, SIZE);
|
|
for (int j = 0; j < KK; ++j) {
|
|
DynamicSparseMatrix<Scalar> aux(SIZE, SIZE);
|
|
mat.reserve(n);
|
|
for (int i = j * n; i < (j + 1) * n; ++i) {
|
|
aux.insert(coords[i].x(), coords[i].y()) += vals[i];
|
|
}
|
|
aux.finalize();
|
|
mat += aux;
|
|
}
|
|
return &mat.coeffRef(coords[0].x(), coords[0].y());
|
|
}
|
|
|
|
EIGEN_DONT_INLINE Scalar* setrand_eigen_compact(const Coordinates& coords, const Values& vals) {
|
|
using namespace Eigen;
|
|
DynamicSparseMatrix<Scalar> setter(SIZE, SIZE);
|
|
setter.reserve(coords.size() / 10);
|
|
for (int i = 0; i < coords.size(); ++i) {
|
|
setter.coeffRef(coords[i].x(), coords[i].y()) += vals[i];
|
|
}
|
|
SparseMatrix<Scalar> mat = setter;
|
|
CHECK_MEM;
|
|
return &mat.coeffRef(coords[0].x(), coords[0].y());
|
|
}
|
|
|
|
EIGEN_DONT_INLINE Scalar* setrand_eigen_gnu_hash(const Coordinates& coords, const Values& vals) {
|
|
using namespace Eigen;
|
|
SparseMatrix<Scalar> mat(SIZE, SIZE);
|
|
{
|
|
RandomSetter<SparseMatrix<Scalar>, StdMapTraits> setter(mat);
|
|
for (int i = 0; i < coords.size(); ++i) {
|
|
setter(coords[i].x(), coords[i].y()) += vals[i];
|
|
}
|
|
CHECK_MEM;
|
|
}
|
|
return &mat.coeffRef(coords[0].x(), coords[0].y());
|
|
}
|
|
|
|
#ifndef NOGOOGLE
|
|
EIGEN_DONT_INLINE Scalar* setrand_eigen_google_dense(const Coordinates& coords, const Values& vals) {
|
|
using namespace Eigen;
|
|
SparseMatrix<Scalar> mat(SIZE, SIZE);
|
|
{
|
|
RandomSetter<SparseMatrix<Scalar>, GoogleDenseHashMapTraits> setter(mat);
|
|
for (int i = 0; i < coords.size(); ++i) setter(coords[i].x(), coords[i].y()) += vals[i];
|
|
CHECK_MEM;
|
|
}
|
|
return &mat.coeffRef(coords[0].x(), coords[0].y());
|
|
}
|
|
|
|
EIGEN_DONT_INLINE Scalar* setrand_eigen_google_sparse(const Coordinates& coords, const Values& vals) {
|
|
using namespace Eigen;
|
|
SparseMatrix<Scalar> mat(SIZE, SIZE);
|
|
{
|
|
RandomSetter<SparseMatrix<Scalar>, GoogleSparseHashMapTraits> setter(mat);
|
|
for (int i = 0; i < coords.size(); ++i) setter(coords[i].x(), coords[i].y()) += vals[i];
|
|
CHECK_MEM;
|
|
}
|
|
return &mat.coeffRef(coords[0].x(), coords[0].y());
|
|
}
|
|
#endif
|
|
|
|
template <class T>
|
|
void coo_tocsr(const int n_row, const int n_col, const int nnz, const Coordinates Aij, const Values Ax, int Bp[],
|
|
int Bj[], T Bx[]) {
|
|
// compute number of non-zero entries per row of A coo_tocsr
|
|
std::fill(Bp, Bp + n_row, 0);
|
|
|
|
for (int n = 0; n < nnz; n++) {
|
|
Bp[Aij[n].x()]++;
|
|
}
|
|
|
|
// cumsum the nnz per row to get Bp[]
|
|
for (int i = 0, cumsum = 0; i < n_row; i++) {
|
|
int temp = Bp[i];
|
|
Bp[i] = cumsum;
|
|
cumsum += temp;
|
|
}
|
|
Bp[n_row] = nnz;
|
|
|
|
// write Aj,Ax into Bj,Bx
|
|
for (int n = 0; n < nnz; n++) {
|
|
int row = Aij[n].x();
|
|
int dest = Bp[row];
|
|
|
|
Bj[dest] = Aij[n].y();
|
|
Bx[dest] = Ax[n];
|
|
|
|
Bp[row]++;
|
|
}
|
|
|
|
for (int i = 0, last = 0; i <= n_row; i++) {
|
|
int temp = Bp[i];
|
|
Bp[i] = last;
|
|
last = temp;
|
|
}
|
|
|
|
// now Bp,Bj,Bx form a CSR representation (with possible duplicates)
|
|
}
|
|
|
|
template <class T1, class T2>
|
|
bool kv_pair_less(const std::pair<T1, T2>& x, const std::pair<T1, T2>& y) {
|
|
return x.first < y.first;
|
|
}
|
|
|
|
template <class I, class T>
|
|
void csr_sort_indices(const I n_row, const I Ap[], I Aj[], T Ax[]) {
|
|
std::vector<std::pair<I, T> > temp;
|
|
|
|
for (I i = 0; i < n_row; i++) {
|
|
I row_start = Ap[i];
|
|
I row_end = Ap[i + 1];
|
|
|
|
temp.clear();
|
|
|
|
for (I jj = row_start; jj < row_end; jj++) {
|
|
temp.push_back(std::make_pair(Aj[jj], Ax[jj]));
|
|
}
|
|
|
|
std::sort(temp.begin(), temp.end(), kv_pair_less<I, T>);
|
|
|
|
for (I jj = row_start, n = 0; jj < row_end; jj++, n++) {
|
|
Aj[jj] = temp[n].first;
|
|
Ax[jj] = temp[n].second;
|
|
}
|
|
}
|
|
}
|
|
|
|
template <class I, class T>
|
|
void csr_sum_duplicates(const I n_row, const I n_col, I Ap[], I Aj[], T Ax[]) {
|
|
I nnz = 0;
|
|
I row_end = 0;
|
|
for (I i = 0; i < n_row; i++) {
|
|
I jj = row_end;
|
|
row_end = Ap[i + 1];
|
|
while (jj < row_end) {
|
|
I j = Aj[jj];
|
|
T x = Ax[jj];
|
|
jj++;
|
|
while (jj < row_end && Aj[jj] == j) {
|
|
x += Ax[jj];
|
|
jj++;
|
|
}
|
|
Aj[nnz] = j;
|
|
Ax[nnz] = x;
|
|
nnz++;
|
|
}
|
|
Ap[i + 1] = nnz;
|
|
}
|
|
}
|
|
|
|
EIGEN_DONT_INLINE Scalar* setrand_scipy(const Coordinates& coords, const Values& vals) {
|
|
using namespace Eigen;
|
|
SparseMatrix<Scalar> mat(SIZE, SIZE);
|
|
mat.resizeNonZeros(coords.size());
|
|
// std::cerr << "setrand_scipy...\n";
|
|
coo_tocsr<Scalar>(SIZE, SIZE, coords.size(), coords, vals, mat._outerIndexPtr(), mat._innerIndexPtr(),
|
|
mat._valuePtr());
|
|
// std::cerr << "coo_tocsr ok\n";
|
|
|
|
csr_sort_indices(SIZE, mat._outerIndexPtr(), mat._innerIndexPtr(), mat._valuePtr());
|
|
|
|
csr_sum_duplicates(SIZE, SIZE, mat._outerIndexPtr(), mat._innerIndexPtr(), mat._valuePtr());
|
|
|
|
mat.resizeNonZeros(mat._outerIndexPtr()[SIZE]);
|
|
|
|
return &mat.coeffRef(coords[0].x(), coords[0].y());
|
|
}
|
|
|
|
#ifndef NOUBLAS
|
|
EIGEN_DONT_INLINE Scalar* setrand_ublas_mapped(const Coordinates& coords, const Values& vals) {
|
|
using namespace boost;
|
|
using namespace boost::numeric;
|
|
using namespace boost::numeric::ublas;
|
|
mapped_matrix<Scalar> aux(SIZE, SIZE);
|
|
for (int i = 0; i < coords.size(); ++i) {
|
|
aux(coords[i].x(), coords[i].y()) += vals[i];
|
|
}
|
|
CHECK_MEM;
|
|
compressed_matrix<Scalar> mat(aux);
|
|
return 0; // &mat(coords[0].x(), coords[0].y());
|
|
}
|
|
/*EIGEN_DONT_INLINE Scalar* setrand_ublas_coord(const Coordinates& coords, const Values& vals)
|
|
{
|
|
using namespace boost;
|
|
using namespace boost::numeric;
|
|
using namespace boost::numeric::ublas;
|
|
coordinate_matrix<Scalar> aux(SIZE,SIZE);
|
|
for (int i=0; i<coords.size(); ++i)
|
|
{
|
|
aux(coords[i].x(), coords[i].y()) = vals[i];
|
|
}
|
|
compressed_matrix<Scalar> mat(aux);
|
|
return 0;//&mat(coords[0].x(), coords[0].y());
|
|
}
|
|
EIGEN_DONT_INLINE Scalar* setrand_ublas_compressed(const Coordinates& coords, const Values& vals)
|
|
{
|
|
using namespace boost;
|
|
using namespace boost::numeric;
|
|
using namespace boost::numeric::ublas;
|
|
compressed_matrix<Scalar> mat(SIZE,SIZE);
|
|
for (int i=0; i<coords.size(); ++i)
|
|
{
|
|
mat(coords[i].x(), coords[i].y()) = vals[i];
|
|
}
|
|
return 0;//&mat(coords[0].x(), coords[0].y());
|
|
}*/
|
|
EIGEN_DONT_INLINE Scalar* setrand_ublas_genvec(const Coordinates& coords, const Values& vals) {
|
|
using namespace boost;
|
|
using namespace boost::numeric;
|
|
using namespace boost::numeric::ublas;
|
|
|
|
// ublas::vector<coordinate_vector<Scalar> > foo;
|
|
generalized_vector_of_vector<Scalar, row_major, ublas::vector<coordinate_vector<Scalar> > > aux(SIZE, SIZE);
|
|
for (int i = 0; i < coords.size(); ++i) {
|
|
aux(coords[i].x(), coords[i].y()) += vals[i];
|
|
}
|
|
CHECK_MEM;
|
|
compressed_matrix<Scalar, row_major> mat(aux);
|
|
return 0; //&mat(coords[0].x(), coords[0].y());
|
|
}
|
|
#endif
|
|
|
|
#ifndef NOMTL
|
|
EIGEN_DONT_INLINE void setrand_mtl(const Coordinates& coords, const Values& vals);
|
|
#endif
|