mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-10-23 05:21:07 +08:00
230 lines
10 KiB
C++
230 lines
10 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#ifndef EIGEN_META_H
|
|
#define EIGEN_META_H
|
|
|
|
namespace internal {
|
|
|
|
/** \internal
|
|
* \file Meta.h
|
|
* This file contains generic metaprogramming classes which are not specifically related to Eigen.
|
|
* \note In case you wonder, yes we're aware that Boost already provides all these features,
|
|
* we however don't want to add a dependency to Boost.
|
|
*/
|
|
|
|
struct true_type { enum { value = 1 }; };
|
|
struct false_type { enum { value = 0 }; };
|
|
|
|
template<bool Condition, typename Then, typename Else>
|
|
struct conditional { typedef Then type; };
|
|
|
|
template<typename Then, typename Else>
|
|
struct conditional <false, Then, Else> { typedef Else type; };
|
|
|
|
template<typename T, typename U> struct is_same { enum { value = 0 }; };
|
|
template<typename T> struct is_same<T,T> { enum { value = 1 }; };
|
|
|
|
template<typename T> struct remove_reference { typedef T type; };
|
|
template<typename T> struct remove_reference<T&> { typedef T type; };
|
|
|
|
template<typename T> struct remove_pointer { typedef T type; };
|
|
template<typename T> struct remove_pointer<T*> { typedef T type; };
|
|
template<typename T> struct remove_pointer<T*const> { typedef T type; };
|
|
|
|
template <class T> struct remove_const { typedef T type; };
|
|
template <class T> struct remove_const<const T> { typedef T type; };
|
|
template <class T> struct remove_const<const T[]> { typedef T type[]; };
|
|
template <class T, unsigned int Size> struct remove_const<const T[Size]> { typedef T type[Size]; };
|
|
|
|
template<typename T> struct remove_all { typedef T type; };
|
|
template<typename T> struct remove_all<const T> { typedef typename remove_all<T>::type type; };
|
|
template<typename T> struct remove_all<T const&> { typedef typename remove_all<T>::type type; };
|
|
template<typename T> struct remove_all<T&> { typedef typename remove_all<T>::type type; };
|
|
template<typename T> struct remove_all<T const*> { typedef typename remove_all<T>::type type; };
|
|
template<typename T> struct remove_all<T*> { typedef typename remove_all<T>::type type; };
|
|
|
|
template<typename T> struct is_arithmetic { enum { value = false }; };
|
|
template<> struct is_arithmetic<float> { enum { value = true }; };
|
|
template<> struct is_arithmetic<double> { enum { value = true }; };
|
|
template<> struct is_arithmetic<long double> { enum { value = true }; };
|
|
template<> struct is_arithmetic<bool> { enum { value = true }; };
|
|
template<> struct is_arithmetic<char> { enum { value = true }; };
|
|
template<> struct is_arithmetic<signed char> { enum { value = true }; };
|
|
template<> struct is_arithmetic<unsigned char> { enum { value = true }; };
|
|
template<> struct is_arithmetic<signed short> { enum { value = true }; };
|
|
template<> struct is_arithmetic<unsigned short>{ enum { value = true }; };
|
|
template<> struct is_arithmetic<signed int> { enum { value = true }; };
|
|
template<> struct is_arithmetic<unsigned int> { enum { value = true }; };
|
|
template<> struct is_arithmetic<signed long> { enum { value = true }; };
|
|
template<> struct is_arithmetic<unsigned long> { enum { value = true }; };
|
|
template<> struct is_arithmetic<signed long long> { enum { value = true }; };
|
|
template<> struct is_arithmetic<unsigned long long> { enum { value = true }; };
|
|
|
|
template <typename T> struct add_const { typedef const T type; };
|
|
template <typename T> struct add_const<T&> { typedef T& type; };
|
|
|
|
template <typename T> struct is_const { enum { value = 0 }; };
|
|
template <typename T> struct is_const<T const> { enum { value = 1 }; };
|
|
|
|
template<typename T> struct add_const_on_value_type { typedef const T type; };
|
|
template<typename T> struct add_const_on_value_type<T&> { typedef T const& type; };
|
|
template<typename T> struct add_const_on_value_type<T*> { typedef T const* type; };
|
|
template<typename T> struct add_const_on_value_type<T* const> { typedef T const* const type; };
|
|
template<typename T> struct add_const_on_value_type<T const* const> { typedef T const* const type; };
|
|
|
|
/** \internal Allows to enable/disable an overload
|
|
* according to a compile time condition.
|
|
*/
|
|
template<bool Condition, typename T> struct enable_if;
|
|
|
|
template<typename T> struct enable_if<true,T>
|
|
{ typedef T type; };
|
|
|
|
/** \internal
|
|
* Convenient struct to get the result type of a unary or binary functor.
|
|
*
|
|
* It supports both the current STL mechanism (using the result_type member) as well as
|
|
* upcoming next STL generation (using a templated result member).
|
|
* If none of these members is provided, then the type of the first argument is returned. FIXME, that behavior is a pretty bad hack.
|
|
*/
|
|
template<typename T> struct result_of {};
|
|
|
|
struct has_none {int a[1];};
|
|
struct has_std_result_type {int a[2];};
|
|
struct has_tr1_result {int a[3];};
|
|
|
|
template<typename Func, typename ArgType, int SizeOf=sizeof(has_none)>
|
|
struct unary_result_of_select {typedef ArgType type;};
|
|
|
|
template<typename Func, typename ArgType>
|
|
struct unary_result_of_select<Func, ArgType, sizeof(has_std_result_type)> {typedef typename Func::result_type type;};
|
|
|
|
template<typename Func, typename ArgType>
|
|
struct unary_result_of_select<Func, ArgType, sizeof(has_tr1_result)> {typedef typename Func::template result<Func(ArgType)>::type type;};
|
|
|
|
template<typename Func, typename ArgType>
|
|
struct result_of<Func(ArgType)> {
|
|
template<typename T>
|
|
static has_std_result_type testFunctor(T const *, typename T::result_type const * = 0);
|
|
template<typename T>
|
|
static has_tr1_result testFunctor(T const *, typename T::template result<T(ArgType)>::type const * = 0);
|
|
static has_none testFunctor(...);
|
|
|
|
// note that the following indirection is needed for gcc-3.3
|
|
enum {FunctorType = sizeof(testFunctor(static_cast<Func*>(0)))};
|
|
typedef typename unary_result_of_select<Func, ArgType, FunctorType>::type type;
|
|
};
|
|
|
|
template<typename Func, typename ArgType0, typename ArgType1, int SizeOf=sizeof(has_none)>
|
|
struct binary_result_of_select {typedef ArgType0 type;};
|
|
|
|
template<typename Func, typename ArgType0, typename ArgType1>
|
|
struct binary_result_of_select<Func, ArgType0, ArgType1, sizeof(has_std_result_type)>
|
|
{typedef typename Func::result_type type;};
|
|
|
|
template<typename Func, typename ArgType0, typename ArgType1>
|
|
struct binary_result_of_select<Func, ArgType0, ArgType1, sizeof(has_tr1_result)>
|
|
{typedef typename Func::template result<Func(ArgType0,ArgType1)>::type type;};
|
|
|
|
template<typename Func, typename ArgType0, typename ArgType1>
|
|
struct result_of<Func(ArgType0,ArgType1)> {
|
|
template<typename T>
|
|
static has_std_result_type testFunctor(T const *, typename T::result_type const * = 0);
|
|
template<typename T>
|
|
static has_tr1_result testFunctor(T const *, typename T::template result<T(ArgType0,ArgType1)>::type const * = 0);
|
|
static has_none testFunctor(...);
|
|
|
|
// note that the following indirection is needed for gcc-3.3
|
|
enum {FunctorType = sizeof(testFunctor(static_cast<Func*>(0)))};
|
|
typedef typename binary_result_of_select<Func, ArgType0, ArgType1, FunctorType>::type type;
|
|
};
|
|
|
|
/** \internal In short, it computes int(sqrt(\a Y)) with \a Y an integer.
|
|
* Usage example: \code meta_sqrt<1023>::ret \endcode
|
|
*/
|
|
template<int Y,
|
|
int InfX = 0,
|
|
int SupX = ((Y==1) ? 1 : Y/2),
|
|
bool Done = ((SupX-InfX)<=1 ? true : ((SupX*SupX <= Y) && ((SupX+1)*(SupX+1) > Y))) >
|
|
// use ?: instead of || just to shut up a stupid gcc 4.3 warning
|
|
class meta_sqrt
|
|
{
|
|
enum {
|
|
MidX = (InfX+SupX)/2,
|
|
TakeInf = MidX*MidX > Y ? 1 : 0,
|
|
NewInf = int(TakeInf) ? InfX : int(MidX),
|
|
NewSup = int(TakeInf) ? int(MidX) : SupX
|
|
};
|
|
public:
|
|
enum { ret = meta_sqrt<Y,NewInf,NewSup>::ret };
|
|
};
|
|
|
|
template<int Y, int InfX, int SupX>
|
|
class meta_sqrt<Y, InfX, SupX, true> { public: enum { ret = (SupX*SupX <= Y) ? SupX : InfX }; };
|
|
|
|
/** \internal determines whether the product of two numeric types is allowed and what the return type is */
|
|
template<typename T, typename U> struct scalar_product_traits;
|
|
|
|
template<typename T> struct scalar_product_traits<T,T>
|
|
{
|
|
//enum { Cost = NumTraits<T>::MulCost };
|
|
typedef T ReturnType;
|
|
};
|
|
|
|
template<typename T> struct scalar_product_traits<T,std::complex<T> >
|
|
{
|
|
//enum { Cost = 2*NumTraits<T>::MulCost };
|
|
typedef std::complex<T> ReturnType;
|
|
};
|
|
|
|
template<typename T> struct scalar_product_traits<std::complex<T>, T>
|
|
{
|
|
//enum { Cost = 2*NumTraits<T>::MulCost };
|
|
typedef std::complex<T> ReturnType;
|
|
};
|
|
|
|
// FIXME quick workaround around current limitation of result_of
|
|
// template<typename Scalar, typename ArgType0, typename ArgType1>
|
|
// struct result_of<scalar_product_op<Scalar>(ArgType0,ArgType1)> {
|
|
// typedef typename scalar_product_traits<typename remove_all<ArgType0>::type, typename remove_all<ArgType1>::type>::ReturnType type;
|
|
// };
|
|
|
|
template<typename T> struct is_diagonal
|
|
{ enum { ret = false }; };
|
|
|
|
template<typename T> struct is_diagonal<DiagonalBase<T> >
|
|
{ enum { ret = true }; };
|
|
|
|
template<typename T> struct is_diagonal<DiagonalWrapper<T> >
|
|
{ enum { ret = true }; };
|
|
|
|
template<typename T, int S> struct is_diagonal<DiagonalMatrix<T,S> >
|
|
{ enum { ret = true }; };
|
|
|
|
} // end namespace internal
|
|
|
|
#endif // EIGEN_META_H
|