eigen/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h
2012-02-03 23:16:52 +01:00

258 lines
8.9 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_CONSERVATIVESPARSESPARSEPRODUCT_H
#define EIGEN_CONSERVATIVESPARSESPARSEPRODUCT_H
namespace internal {
template<typename Lhs, typename Rhs, typename ResultType>
static void conservative_sparse_sparse_product_impl(const Lhs& lhs, const Rhs& rhs, ResultType& res)
{
typedef typename remove_all<Lhs>::type::Scalar Scalar;
typedef typename remove_all<Lhs>::type::Index Index;
// make sure to call innerSize/outerSize since we fake the storage order.
Index rows = lhs.innerSize();
Index cols = rhs.outerSize();
eigen_assert(lhs.outerSize() == rhs.innerSize());
std::vector<bool> mask(rows,false);
Matrix<Scalar,Dynamic,1> values(rows);
Matrix<Index,Dynamic,1> indices(rows);
// estimate the number of non zero entries
// given a rhs column containing Y non zeros, we assume that the respective Y columns
// of the lhs differs in average of one non zeros, thus the number of non zeros for
// the product of a rhs column with the lhs is X+Y where X is the average number of non zero
// per column of the lhs.
// Therefore, we have nnz(lhs*rhs) = nnz(lhs) + nnz(rhs)
Index estimated_nnz_prod = lhs.nonZeros() + rhs.nonZeros();
res.setZero();
res.reserve(Index(estimated_nnz_prod));
// we compute each column of the result, one after the other
for (Index j=0; j<cols; ++j)
{
res.startVec(j);
Index nnz = 0;
for (typename Rhs::InnerIterator rhsIt(rhs, j); rhsIt; ++rhsIt)
{
Scalar y = rhsIt.value();
Index k = rhsIt.index();
for (typename Lhs::InnerIterator lhsIt(lhs, k); lhsIt; ++lhsIt)
{
Index i = lhsIt.index();
Scalar x = lhsIt.value();
if(!mask[i])
{
mask[i] = true;
values[i] = x * y;
indices[nnz] = i;
++nnz;
}
else
values[i] += x * y;
}
}
// unordered insertion
for(int k=0; k<nnz; ++k)
{
int i = indices[k];
res.insertBackByOuterInnerUnordered(j,i) = values[i];
mask[i] = false;
}
#if 0
// alternative ordered insertion code:
int t200 = rows/(log2(200)*1.39);
int t = (rows*100)/139;
// FIXME reserve nnz non zeros
// FIXME implement fast sort algorithms for very small nnz
// if the result is sparse enough => use a quick sort
// otherwise => loop through the entire vector
// In order to avoid to perform an expensive log2 when the
// result is clearly very sparse we use a linear bound up to 200.
//if((nnz<200 && nnz<t200) || nnz * log2(nnz) < t)
//res.startVec(j);
if(true)
{
if(nnz>1) std::sort(indices.data(),indices.data()+nnz);
for(int k=0; k<nnz; ++k)
{
int i = indices[k];
res.insertBackByOuterInner(j,i) = values[i];
mask[i] = false;
}
}
else
{
// dense path
for(int i=0; i<rows; ++i)
{
if(mask[i])
{
mask[i] = false;
res.insertBackByOuterInner(j,i) = values[i];
}
}
}
#endif
}
res.finalize();
}
} // end namespace internal
namespace internal {
template<typename Lhs, typename Rhs, typename ResultType,
int LhsStorageOrder = traits<Lhs>::Flags&RowMajorBit,
int RhsStorageOrder = traits<Rhs>::Flags&RowMajorBit,
int ResStorageOrder = traits<ResultType>::Flags&RowMajorBit>
struct conservative_sparse_sparse_product_selector;
template<typename Lhs, typename Rhs, typename ResultType>
struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,ColMajor,ColMajor,ColMajor>
{
typedef typename remove_all<Lhs>::type LhsCleaned;
typedef typename LhsCleaned::Scalar Scalar;
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
{
typedef SparseMatrix<typename ResultType::Scalar,RowMajor> RowMajorMatrix;
typedef SparseMatrix<typename ResultType::Scalar,ColMajor> ColMajorMatrix;
ColMajorMatrix resCol(lhs.rows(),rhs.cols());
internal::conservative_sparse_sparse_product_impl<Lhs,Rhs,ColMajorMatrix>(lhs, rhs, resCol);
// sort the non zeros:
RowMajorMatrix resRow(resCol);
res = resRow;
}
};
template<typename Lhs, typename Rhs, typename ResultType>
struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,RowMajor,ColMajor,ColMajor>
{
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
{
typedef SparseMatrix<typename ResultType::Scalar,RowMajor> RowMajorMatrix;
RowMajorMatrix rhsRow = rhs;
RowMajorMatrix resRow(lhs.rows(), rhs.cols());
internal::conservative_sparse_sparse_product_impl<RowMajorMatrix,Lhs,RowMajorMatrix>(rhsRow, lhs, resRow);
res = resRow;
}
};
template<typename Lhs, typename Rhs, typename ResultType>
struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,ColMajor,RowMajor,ColMajor>
{
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
{
typedef SparseMatrix<typename ResultType::Scalar,RowMajor> RowMajorMatrix;
RowMajorMatrix lhsRow = lhs;
RowMajorMatrix resRow(lhs.rows(), rhs.cols());
internal::conservative_sparse_sparse_product_impl<Rhs,RowMajorMatrix,RowMajorMatrix>(rhs, lhsRow, resRow);
res = resRow;
}
};
template<typename Lhs, typename Rhs, typename ResultType>
struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,RowMajor,RowMajor,ColMajor>
{
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
{
typedef SparseMatrix<typename ResultType::Scalar,RowMajor> RowMajorMatrix;
RowMajorMatrix resRow(lhs.rows(), rhs.cols());
internal::conservative_sparse_sparse_product_impl<Rhs,Lhs,RowMajorMatrix>(rhs, lhs, resRow);
res = resRow;
}
};
template<typename Lhs, typename Rhs, typename ResultType>
struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,ColMajor,ColMajor,RowMajor>
{
typedef typename traits<typename remove_all<Lhs>::type>::Scalar Scalar;
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
{
typedef SparseMatrix<typename ResultType::Scalar,ColMajor> ColMajorMatrix;
ColMajorMatrix resCol(lhs.rows(), rhs.cols());
internal::conservative_sparse_sparse_product_impl<Lhs,Rhs,ColMajorMatrix>(lhs, rhs, resCol);
res = resCol;
}
};
template<typename Lhs, typename Rhs, typename ResultType>
struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,RowMajor,ColMajor,RowMajor>
{
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
{
typedef SparseMatrix<typename ResultType::Scalar,ColMajor> ColMajorMatrix;
ColMajorMatrix lhsCol = lhs;
ColMajorMatrix resCol(lhs.rows(), rhs.cols());
internal::conservative_sparse_sparse_product_impl<ColMajorMatrix,Rhs,ColMajorMatrix>(lhsCol, rhs, resCol);
res = resCol;
}
};
template<typename Lhs, typename Rhs, typename ResultType>
struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,ColMajor,RowMajor,RowMajor>
{
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
{
typedef SparseMatrix<typename ResultType::Scalar,ColMajor> ColMajorMatrix;
ColMajorMatrix rhsCol = rhs;
ColMajorMatrix resCol(lhs.rows(), rhs.cols());
internal::conservative_sparse_sparse_product_impl<Lhs,ColMajorMatrix,ColMajorMatrix>(lhs, rhsCol, resCol);
res = resCol;
}
};
template<typename Lhs, typename Rhs, typename ResultType>
struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,RowMajor,RowMajor,RowMajor>
{
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
{
typedef SparseMatrix<typename ResultType::Scalar,RowMajor> RowMajorMatrix;
typedef SparseMatrix<typename ResultType::Scalar,ColMajor> ColMajorMatrix;
RowMajorMatrix resRow(lhs.rows(),rhs.cols());
internal::conservative_sparse_sparse_product_impl<Rhs,Lhs,RowMajorMatrix>(rhs, lhs, resRow);
// sort the non zeros:
ColMajorMatrix resCol(resRow);
res = resCol;
}
};
} // end namespace internal
#endif // EIGEN_CONSERVATIVESPARSESPARSEPRODUCT_H