mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-07-19 19:34:29 +08:00
258 lines
8.9 KiB
C++
258 lines
8.9 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#ifndef EIGEN_CONSERVATIVESPARSESPARSEPRODUCT_H
|
|
#define EIGEN_CONSERVATIVESPARSESPARSEPRODUCT_H
|
|
|
|
namespace internal {
|
|
|
|
template<typename Lhs, typename Rhs, typename ResultType>
|
|
static void conservative_sparse_sparse_product_impl(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
|
{
|
|
typedef typename remove_all<Lhs>::type::Scalar Scalar;
|
|
typedef typename remove_all<Lhs>::type::Index Index;
|
|
|
|
// make sure to call innerSize/outerSize since we fake the storage order.
|
|
Index rows = lhs.innerSize();
|
|
Index cols = rhs.outerSize();
|
|
eigen_assert(lhs.outerSize() == rhs.innerSize());
|
|
|
|
std::vector<bool> mask(rows,false);
|
|
Matrix<Scalar,Dynamic,1> values(rows);
|
|
Matrix<Index,Dynamic,1> indices(rows);
|
|
|
|
// estimate the number of non zero entries
|
|
// given a rhs column containing Y non zeros, we assume that the respective Y columns
|
|
// of the lhs differs in average of one non zeros, thus the number of non zeros for
|
|
// the product of a rhs column with the lhs is X+Y where X is the average number of non zero
|
|
// per column of the lhs.
|
|
// Therefore, we have nnz(lhs*rhs) = nnz(lhs) + nnz(rhs)
|
|
Index estimated_nnz_prod = lhs.nonZeros() + rhs.nonZeros();
|
|
|
|
res.setZero();
|
|
res.reserve(Index(estimated_nnz_prod));
|
|
// we compute each column of the result, one after the other
|
|
for (Index j=0; j<cols; ++j)
|
|
{
|
|
|
|
res.startVec(j);
|
|
Index nnz = 0;
|
|
for (typename Rhs::InnerIterator rhsIt(rhs, j); rhsIt; ++rhsIt)
|
|
{
|
|
Scalar y = rhsIt.value();
|
|
Index k = rhsIt.index();
|
|
for (typename Lhs::InnerIterator lhsIt(lhs, k); lhsIt; ++lhsIt)
|
|
{
|
|
Index i = lhsIt.index();
|
|
Scalar x = lhsIt.value();
|
|
if(!mask[i])
|
|
{
|
|
mask[i] = true;
|
|
values[i] = x * y;
|
|
indices[nnz] = i;
|
|
++nnz;
|
|
}
|
|
else
|
|
values[i] += x * y;
|
|
}
|
|
}
|
|
|
|
// unordered insertion
|
|
for(int k=0; k<nnz; ++k)
|
|
{
|
|
int i = indices[k];
|
|
res.insertBackByOuterInnerUnordered(j,i) = values[i];
|
|
mask[i] = false;
|
|
}
|
|
|
|
#if 0
|
|
// alternative ordered insertion code:
|
|
|
|
int t200 = rows/(log2(200)*1.39);
|
|
int t = (rows*100)/139;
|
|
|
|
// FIXME reserve nnz non zeros
|
|
// FIXME implement fast sort algorithms for very small nnz
|
|
// if the result is sparse enough => use a quick sort
|
|
// otherwise => loop through the entire vector
|
|
// In order to avoid to perform an expensive log2 when the
|
|
// result is clearly very sparse we use a linear bound up to 200.
|
|
//if((nnz<200 && nnz<t200) || nnz * log2(nnz) < t)
|
|
//res.startVec(j);
|
|
if(true)
|
|
{
|
|
if(nnz>1) std::sort(indices.data(),indices.data()+nnz);
|
|
for(int k=0; k<nnz; ++k)
|
|
{
|
|
int i = indices[k];
|
|
res.insertBackByOuterInner(j,i) = values[i];
|
|
mask[i] = false;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// dense path
|
|
for(int i=0; i<rows; ++i)
|
|
{
|
|
if(mask[i])
|
|
{
|
|
mask[i] = false;
|
|
res.insertBackByOuterInner(j,i) = values[i];
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
}
|
|
res.finalize();
|
|
}
|
|
|
|
|
|
} // end namespace internal
|
|
|
|
namespace internal {
|
|
|
|
template<typename Lhs, typename Rhs, typename ResultType,
|
|
int LhsStorageOrder = traits<Lhs>::Flags&RowMajorBit,
|
|
int RhsStorageOrder = traits<Rhs>::Flags&RowMajorBit,
|
|
int ResStorageOrder = traits<ResultType>::Flags&RowMajorBit>
|
|
struct conservative_sparse_sparse_product_selector;
|
|
|
|
template<typename Lhs, typename Rhs, typename ResultType>
|
|
struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,ColMajor,ColMajor,ColMajor>
|
|
{
|
|
typedef typename remove_all<Lhs>::type LhsCleaned;
|
|
typedef typename LhsCleaned::Scalar Scalar;
|
|
|
|
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
|
{
|
|
typedef SparseMatrix<typename ResultType::Scalar,RowMajor> RowMajorMatrix;
|
|
typedef SparseMatrix<typename ResultType::Scalar,ColMajor> ColMajorMatrix;
|
|
ColMajorMatrix resCol(lhs.rows(),rhs.cols());
|
|
internal::conservative_sparse_sparse_product_impl<Lhs,Rhs,ColMajorMatrix>(lhs, rhs, resCol);
|
|
// sort the non zeros:
|
|
RowMajorMatrix resRow(resCol);
|
|
res = resRow;
|
|
}
|
|
};
|
|
|
|
template<typename Lhs, typename Rhs, typename ResultType>
|
|
struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,RowMajor,ColMajor,ColMajor>
|
|
{
|
|
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
|
{
|
|
typedef SparseMatrix<typename ResultType::Scalar,RowMajor> RowMajorMatrix;
|
|
RowMajorMatrix rhsRow = rhs;
|
|
RowMajorMatrix resRow(lhs.rows(), rhs.cols());
|
|
internal::conservative_sparse_sparse_product_impl<RowMajorMatrix,Lhs,RowMajorMatrix>(rhsRow, lhs, resRow);
|
|
res = resRow;
|
|
}
|
|
};
|
|
|
|
template<typename Lhs, typename Rhs, typename ResultType>
|
|
struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,ColMajor,RowMajor,ColMajor>
|
|
{
|
|
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
|
{
|
|
typedef SparseMatrix<typename ResultType::Scalar,RowMajor> RowMajorMatrix;
|
|
RowMajorMatrix lhsRow = lhs;
|
|
RowMajorMatrix resRow(lhs.rows(), rhs.cols());
|
|
internal::conservative_sparse_sparse_product_impl<Rhs,RowMajorMatrix,RowMajorMatrix>(rhs, lhsRow, resRow);
|
|
res = resRow;
|
|
}
|
|
};
|
|
|
|
template<typename Lhs, typename Rhs, typename ResultType>
|
|
struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,RowMajor,RowMajor,ColMajor>
|
|
{
|
|
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
|
{
|
|
typedef SparseMatrix<typename ResultType::Scalar,RowMajor> RowMajorMatrix;
|
|
RowMajorMatrix resRow(lhs.rows(), rhs.cols());
|
|
internal::conservative_sparse_sparse_product_impl<Rhs,Lhs,RowMajorMatrix>(rhs, lhs, resRow);
|
|
res = resRow;
|
|
}
|
|
};
|
|
|
|
|
|
template<typename Lhs, typename Rhs, typename ResultType>
|
|
struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,ColMajor,ColMajor,RowMajor>
|
|
{
|
|
typedef typename traits<typename remove_all<Lhs>::type>::Scalar Scalar;
|
|
|
|
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
|
{
|
|
typedef SparseMatrix<typename ResultType::Scalar,ColMajor> ColMajorMatrix;
|
|
ColMajorMatrix resCol(lhs.rows(), rhs.cols());
|
|
internal::conservative_sparse_sparse_product_impl<Lhs,Rhs,ColMajorMatrix>(lhs, rhs, resCol);
|
|
res = resCol;
|
|
}
|
|
};
|
|
|
|
template<typename Lhs, typename Rhs, typename ResultType>
|
|
struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,RowMajor,ColMajor,RowMajor>
|
|
{
|
|
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
|
{
|
|
typedef SparseMatrix<typename ResultType::Scalar,ColMajor> ColMajorMatrix;
|
|
ColMajorMatrix lhsCol = lhs;
|
|
ColMajorMatrix resCol(lhs.rows(), rhs.cols());
|
|
internal::conservative_sparse_sparse_product_impl<ColMajorMatrix,Rhs,ColMajorMatrix>(lhsCol, rhs, resCol);
|
|
res = resCol;
|
|
}
|
|
};
|
|
|
|
template<typename Lhs, typename Rhs, typename ResultType>
|
|
struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,ColMajor,RowMajor,RowMajor>
|
|
{
|
|
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
|
{
|
|
typedef SparseMatrix<typename ResultType::Scalar,ColMajor> ColMajorMatrix;
|
|
ColMajorMatrix rhsCol = rhs;
|
|
ColMajorMatrix resCol(lhs.rows(), rhs.cols());
|
|
internal::conservative_sparse_sparse_product_impl<Lhs,ColMajorMatrix,ColMajorMatrix>(lhs, rhsCol, resCol);
|
|
res = resCol;
|
|
}
|
|
};
|
|
|
|
template<typename Lhs, typename Rhs, typename ResultType>
|
|
struct conservative_sparse_sparse_product_selector<Lhs,Rhs,ResultType,RowMajor,RowMajor,RowMajor>
|
|
{
|
|
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
|
{
|
|
typedef SparseMatrix<typename ResultType::Scalar,RowMajor> RowMajorMatrix;
|
|
typedef SparseMatrix<typename ResultType::Scalar,ColMajor> ColMajorMatrix;
|
|
RowMajorMatrix resRow(lhs.rows(),rhs.cols());
|
|
internal::conservative_sparse_sparse_product_impl<Rhs,Lhs,RowMajorMatrix>(rhs, lhs, resRow);
|
|
// sort the non zeros:
|
|
ColMajorMatrix resCol(resRow);
|
|
res = resCol;
|
|
}
|
|
};
|
|
|
|
} // end namespace internal
|
|
|
|
|
|
#endif // EIGEN_CONSERVATIVESPARSESPARSEPRODUCT_H
|