mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-04-22 09:39:34 +08:00
174 lines
6.7 KiB
C++
174 lines
6.7 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra. Eigen itself is part of the KDE project.
|
|
//
|
|
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#ifndef EIGEN_ALIGNEDBOX_H
|
|
#define EIGEN_ALIGNEDBOX_H
|
|
|
|
/** \geometry_module \ingroup Geometry_Module
|
|
* \nonstableyet
|
|
*
|
|
* \class AlignedBox
|
|
*
|
|
* \brief An axis aligned box
|
|
*
|
|
* \param _Scalar the type of the scalar coefficients
|
|
* \param _AmbientDim the dimension of the ambient space, can be a compile time value or Dynamic.
|
|
*
|
|
* This class represents an axis aligned box as a pair of the minimal and maximal corners.
|
|
*/
|
|
template <typename _Scalar, int _AmbientDim>
|
|
class AlignedBox
|
|
{
|
|
public:
|
|
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim==Dynamic ? Dynamic : _AmbientDim+1)
|
|
enum { AmbientDimAtCompileTime = _AmbientDim };
|
|
typedef _Scalar Scalar;
|
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
|
typedef Matrix<Scalar,AmbientDimAtCompileTime,1> VectorType;
|
|
|
|
/** Default constructor initializing a null box. */
|
|
inline explicit AlignedBox()
|
|
{ if (AmbientDimAtCompileTime!=Dynamic) setNull(); }
|
|
|
|
/** Constructs a null box with \a _dim the dimension of the ambient space. */
|
|
inline explicit AlignedBox(int _dim) : m_min(_dim), m_max(_dim)
|
|
{ setNull(); }
|
|
|
|
/** Constructs a box with extremities \a _min and \a _max. */
|
|
inline AlignedBox(const VectorType& _min, const VectorType& _max) : m_min(_min), m_max(_max) {}
|
|
|
|
/** Constructs a box containing a single point \a p. */
|
|
inline explicit AlignedBox(const VectorType& p) : m_min(p), m_max(p) {}
|
|
|
|
~AlignedBox() {}
|
|
|
|
/** \returns the dimension in which the box holds */
|
|
inline int dim() const { return AmbientDimAtCompileTime==Dynamic ? m_min.size()-1 : AmbientDimAtCompileTime; }
|
|
|
|
/** \returns true if the box is null, i.e, empty. */
|
|
inline bool isNull() const { return (m_min.cwise() > m_max).any(); }
|
|
|
|
/** Makes \c *this a null/empty box. */
|
|
inline void setNull()
|
|
{
|
|
m_min.setConstant( std::numeric_limits<Scalar>::max());
|
|
m_max.setConstant(-std::numeric_limits<Scalar>::max());
|
|
}
|
|
|
|
/** \returns the minimal corner */
|
|
inline const VectorType& min() const { return m_min; }
|
|
/** \returns a non const reference to the minimal corner */
|
|
inline VectorType& min() { return m_min; }
|
|
/** \returns the maximal corner */
|
|
inline const VectorType& max() const { return m_max; }
|
|
/** \returns a non const reference to the maximal corner */
|
|
inline VectorType& max() { return m_max; }
|
|
|
|
/** \returns true if the point \a p is inside the box \c *this. */
|
|
inline bool contains(const VectorType& p) const
|
|
{ return (m_min.cwise()<=p).all() && (p.cwise()<=m_max).all(); }
|
|
|
|
/** \returns true if the box \a b is entirely inside the box \c *this. */
|
|
inline bool contains(const AlignedBox& b) const
|
|
{ return (m_min.cwise()<=b.min()).all() && (b.max().cwise()<=m_max).all(); }
|
|
|
|
/** Extends \c *this such that it contains the point \a p and returns a reference to \c *this. */
|
|
inline AlignedBox& extend(const VectorType& p)
|
|
{ m_min = m_min.cwise().min(p); m_max = m_max.cwise().max(p); return *this; }
|
|
|
|
/** Extends \c *this such that it contains the box \a b and returns a reference to \c *this. */
|
|
inline AlignedBox& extend(const AlignedBox& b)
|
|
{ m_min = m_min.cwise().min(b.m_min); m_max = m_max.cwise().max(b.m_max); return *this; }
|
|
|
|
/** Clamps \c *this by the box \a b and returns a reference to \c *this. */
|
|
inline AlignedBox& clamp(const AlignedBox& b)
|
|
{ m_min = m_min.cwise().max(b.m_min); m_max = m_max.cwise().min(b.m_max); return *this; }
|
|
|
|
/** Translate \c *this by the vector \a t and returns a reference to \c *this. */
|
|
inline AlignedBox& translate(const VectorType& t)
|
|
{ m_min += t; m_max += t; return *this; }
|
|
|
|
/** \returns the squared distance between the point \a p and the box \c *this,
|
|
* and zero if \a p is inside the box.
|
|
* \sa exteriorDistance()
|
|
*/
|
|
inline Scalar squaredExteriorDistance(const VectorType& p) const;
|
|
|
|
/** \returns the distance between the point \a p and the box \c *this,
|
|
* and zero if \a p is inside the box.
|
|
* \sa squaredExteriorDistance()
|
|
*/
|
|
inline Scalar exteriorDistance(const VectorType& p) const
|
|
{ return ei_sqrt(squaredExteriorDistance(p)); }
|
|
|
|
/** \returns \c *this with scalar type casted to \a NewScalarType
|
|
*
|
|
* Note that if \a NewScalarType is equal to the current scalar type of \c *this
|
|
* then this function smartly returns a const reference to \c *this.
|
|
*/
|
|
template<typename NewScalarType>
|
|
inline typename internal::cast_return_type<AlignedBox,
|
|
AlignedBox<NewScalarType,AmbientDimAtCompileTime> >::type cast() const
|
|
{
|
|
return typename internal::cast_return_type<AlignedBox,
|
|
AlignedBox<NewScalarType,AmbientDimAtCompileTime> >::type(*this);
|
|
}
|
|
|
|
/** Copy constructor with scalar type conversion */
|
|
template<typename OtherScalarType>
|
|
inline explicit AlignedBox(const AlignedBox<OtherScalarType,AmbientDimAtCompileTime>& other)
|
|
{
|
|
m_min = other.min().template cast<Scalar>();
|
|
m_max = other.max().template cast<Scalar>();
|
|
}
|
|
|
|
/** \returns \c true if \c *this is approximately equal to \a other, within the precision
|
|
* determined by \a prec.
|
|
*
|
|
* \sa MatrixBase::isApprox() */
|
|
bool isApprox(const AlignedBox& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const
|
|
{ return m_min.isApprox(other.m_min, prec) && m_max.isApprox(other.m_max, prec); }
|
|
|
|
protected:
|
|
|
|
VectorType m_min, m_max;
|
|
};
|
|
|
|
template<typename Scalar,int AmbiantDim>
|
|
inline Scalar AlignedBox<Scalar,AmbiantDim>::squaredExteriorDistance(const VectorType& p) const
|
|
{
|
|
Scalar dist2 = 0.;
|
|
Scalar aux;
|
|
for (int k=0; k<dim(); ++k)
|
|
{
|
|
if ((aux = (p[k]-m_min[k]))<0.)
|
|
dist2 += aux*aux;
|
|
else if ( (aux = (m_max[k]-p[k]))<0. )
|
|
dist2 += aux*aux;
|
|
}
|
|
return dist2;
|
|
}
|
|
|
|
#endif // EIGEN_ALIGNEDBOX_H
|