Antonio Sanchez bf66137efc New GPU test utilities.
This introduces new functions:
```
// returns kernel(args...) running on the CPU.
Eigen::run_on_cpu(Kernel kernel, Args&&... args);

// returns kernel(args...) running on the GPU.
Eigen::run_on_gpu(Kernel kernel, Args&&... args);
Eigen::run_on_gpu_with_hint(size_t buffer_capacity_hint, Kernel kernel, Args&&... args);

// returns kernel(args...) running on the GPU if using
//   a GPU compiler, or CPU otherwise.
Eigen::run(Kernel kernel, Args&&... args);
Eigen::run_with_hint(size_t buffer_capacity_hint, Kernel kernel, Args&&... args);
```

Running on the GPU is accomplished by:
- Serializing the kernel inputs on the CPU
- Transferring the inputs to the GPU
- Passing the kernel and serialized inputs to a GPU kernel
- Deserializing the inputs on the GPU
- Running `kernel(inputs...)` on the GPU
- Serializing all output parameters and the return value
- Transferring the serialized outputs back to the CPU
- Deserializing the outputs and return value on the CPU
- Returning the deserialized return value

All inputs must be serializable (currently POD types, `Eigen::Matrix`
and `Eigen::Array`).  The kernel must also  be POD (though usually
contains no actual data).

Tested on CUDA 9.1, 10.2, 11.3, with g++-6, g++-8, g++-10 respectively.

This MR depends on !622, !623, !624.
2021-09-10 14:22:50 -07:00
2021-09-09 12:18:07 -05:00
2021-09-07 17:28:24 +00:00
2021-08-25 20:07:48 +00:00
2021-09-10 14:22:50 -07:00
2012-07-15 10:20:59 -04:00

Eigen is a C++ template library for linear algebra: matrices, vectors, numerical solvers, and related algorithms.

For more information go to http://eigen.tuxfamily.org/.

For pull request, bug reports, and feature requests, go to https://gitlab.com/libeigen/eigen.

Description
No description provided
Readme MPL-2.0 127 MiB
Languages
C++ 85.1%
Fortran 8.5%
C 2.7%
CMake 1.9%
Cuda 1.2%
Other 0.4%