eigen/Eigen/Core/MatrixBase.h
Benoit Jacob c38156a217 now we also have a examples/ directory for self-contained examples,
and this is already used to document DynBlock
2007-12-21 10:35:00 +00:00

223 lines
9.7 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2006-2007 Benoit Jacob <jacob@math.jussieu.fr>
//
// Eigen is free software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the Free Software
// Foundation; either version 2 or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
// details.
//
// You should have received a copy of the GNU General Public License along
// with Eigen; if not, write to the Free Software Foundation, Inc., 51
// Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
//
// As a special exception, if other files instantiate templates or use macros
// or functions from this file, or you compile this file and link it
// with other works to produce a work based on this file, this file does not
// by itself cause the resulting work to be covered by the GNU General Public
// License. This exception does not invalidate any other reasons why a work
// based on this file might be covered by the GNU General Public License.
#ifndef EIGEN_MATRIXBASE_H
#define EIGEN_MATRIXBASE_H
/** \class MatrixBase
*
* \brief Base class for all matrices, vectors, and expressions
*
* This class is the base that is inherited by all matrix, vector, and expression
* types. Most of the Eigen API is contained in this class.
*
* This class takes two template parameters:
* \param Scalar the type of the coefficients, e.g. float, double, etc.
* \param Derived the derived type, e.g. a matrix type, or an expression, etc.
* Indeed, a separate MatrixBase type is generated for each derived type
* so one knows from inside MatrixBase, at compile-time, what the derived type is.
*
* When writing a function taking Eigen objects as argument, if you want your function
* to take as argument any matrix, vector, or expression, just let it take a
* MatrixBase argument. As an example, here is a function printFirstRow which, given
* a matrix, vector, or expression \a x, prints the first row of \a x.
*
* \code
template<typename Scalar, typename Derived>
void printFirstRow(const Eigen::MatrixBase<Scalar, Derived>& x)
{
cout << x.row(0) << endl;
}
* \endcode
*/
template<typename Scalar, typename Derived> class MatrixBase
{
public:
/** The number of rows and of columns at compile-time. These are just
* copies of the values provided by the \a Derived type. If a value
* is not known at compile-time, it is set to the \a Dynamic constant.
* \sa rows(), cols(), SizeAtCompileTime */
static const int RowsAtCompileTime = Derived::_RowsAtCompileTime,
ColsAtCompileTime = Derived::_ColsAtCompileTime;
/** This is equal to the number of coefficients, i.e. the number of
* rows times the number of columns, or to \a Dynamic if this is not
* known at compile-time. \sa RowsAtCompileTime, ColsAtCompileTime */
static const int SizeAtCompileTime
= RowsAtCompileTime == Dynamic || ColsAtCompileTime == Dynamic
? Dynamic : RowsAtCompileTime * ColsAtCompileTime;
/** This is set to true if either the number of rows or the number of
* columns is known at compile-time to be equal to 1. Indeed, in that case,
* we are dealing with a column-vector (if there is only one column) or with
* a row-vector (if there is only one row). */
static const bool IsVector = RowsAtCompileTime == 1 || ColsAtCompileTime == 1;
/** This is the "reference type" used to pass objects of type MatrixBase as arguments
* to functions. If this MatrixBase type represents an expression, then \a Ref
* is just this MatrixBase type itself, i.e. expressions are just passed by value
* and the compiler is supposed to be clever enough to optimize that. If, on the
* other hand, this MatrixBase type is an actual matrix or vector, then \a Ref is
* a typedef MatrixRef, which is like a reference, so that matrices and vectors
* are passed by reference, not by value. \sa ref()*/
typedef typename ForwardDecl<Derived>::Ref Ref;
/** This is the "real scalar" type; if the \a Scalar type is already real numbers
* (e.g. int, float or double) then RealScalar is just the same as \a Scalar. If
* \a Scalar is \a std::complex<T> then RealScalar is \a T. */
typedef typename NumTraits<Scalar>::Real RealScalar;
/** \returns the number of rows. \sa cols(), RowsAtCompileTime */
int rows() const { return static_cast<const Derived *>(this)->_rows(); }
/** \returns the number of columns. \sa row(), ColsAtCompileTime*/
int cols() const { return static_cast<const Derived *>(this)->_cols(); }
/** \returns the number of coefficients, which is \a rows()*cols().
* \sa rows(), cols(). */
int size() const { return rows() * cols(); }
/** \returns a Ref to *this. \sa Ref */
Ref ref() const
{ return static_cast<const Derived *>(this)->_ref(); }
/** Copies \a other into *this. \returns a reference to *this. */
template<typename OtherDerived>
Derived& operator=(const MatrixBase<Scalar, OtherDerived>& other);
// Special case of the above template operator=, in order to prevent the compiler
//from generating a default operator= (issue hit with g++ 4.1)
Derived& operator=(const MatrixBase& other)
{
return this->operator=<Derived>(other);
}
template<typename NewScalar> const Cast<NewScalar, Derived> cast() const;
Row<Derived> row(int i) const;
Column<Derived> col(int i) const;
Minor<Derived> minor(int row, int col) const;
DynBlock<Derived> dynBlock(int startRow, int startCol,
int blockRows, int blockCols) const;
template<int BlockRows, int BlockCols>
Block<Derived, BlockRows, BlockCols> block(int startRow, int startCol) const;
Transpose<Derived> transpose() const;
const Conjugate<Derived> conjugate() const;
const Transpose<Conjugate<Derived> > adjoint() const;
Scalar trace() const;
template<typename OtherDerived>
Scalar dot(const OtherDerived& other) const;
RealScalar norm2() const;
RealScalar norm() const;
ScalarMultiple<Derived> normalized() const;
static Eval<Random<Derived> > random(int rows, int cols);
static Eval<Random<Derived> > random(int size);
static Eval<Random<Derived> > random();
static const Zero<Derived> zero(int rows, int cols);
static const Zero<Derived> zero(int size);
static const Zero<Derived> zero();
static const Ones<Derived> ones(int rows, int cols);
static const Ones<Derived> ones(int size);
static const Ones<Derived> ones();
static const Identity<Derived> identity(int rows = RowsAtCompileTime);
template<typename OtherDerived>
static const DiagonalMatrix<Derived, OtherDerived>
diagonal(const OtherDerived& coeffs);
DiagonalCoeffs<Derived> diagonal() const;
static const Map<Derived> map(const Scalar* array, int rows, int cols);
static const Map<Derived> map(const Scalar* array, int size);
static const Map<Derived> map(const Scalar* array);
static Map<Derived> map(Scalar* array, int rows, int cols);
static Map<Derived> map(Scalar* array, int size);
static Map<Derived> map(Scalar* array);
template<typename OtherDerived>
bool isApprox(
const OtherDerived& other,
const typename NumTraits<Scalar>::Real& prec = precision<Scalar>()
) const;
bool isMuchSmallerThan(
const typename NumTraits<Scalar>::Real& other,
const typename NumTraits<Scalar>::Real& prec = precision<Scalar>()
) const;
template<typename OtherDerived>
bool isMuchSmallerThan(
const MatrixBase<Scalar, OtherDerived>& other,
const typename NumTraits<Scalar>::Real& prec = precision<Scalar>()
) const;
template<typename OtherDerived>
const Product<Derived, OtherDerived>
lazyProduct(const MatrixBase<Scalar, OtherDerived>& other) const EIGEN_ALWAYS_INLINE;
const Opposite<Derived> operator-() const;
template<typename OtherDerived>
Derived& operator+=(const MatrixBase<Scalar, OtherDerived>& other);
template<typename OtherDerived>
Derived& operator-=(const MatrixBase<Scalar, OtherDerived>& other);
template<typename OtherDerived>
Derived& operator*=(const MatrixBase<Scalar, OtherDerived>& other);
Derived& operator*=(const int& other);
Derived& operator*=(const float& other);
Derived& operator*=(const double& other);
Derived& operator*=(const std::complex<float>& other);
Derived& operator*=(const std::complex<double>& other);
Derived& operator/=(const int& other);
Derived& operator/=(const float& other);
Derived& operator/=(const double& other);
Derived& operator/=(const std::complex<float>& other);
Derived& operator/=(const std::complex<double>& other);
Scalar coeff(int row, int col, AssertLevel assertLevel) const;
Scalar operator()(int row, int col) const;
Scalar& coeffRef(int row, int col, AssertLevel assertLevel);
Scalar& operator()(int row, int col);
Scalar coeff(int index, AssertLevel assertLevel) const;
Scalar operator[](int index) const;
Scalar& coeffRef(int index, AssertLevel assertLevel);
Scalar& operator[](int index);
Scalar x() const;
Scalar y() const;
Scalar z() const;
Scalar w() const;
Scalar& x();
Scalar& y();
Scalar& z();
Scalar& w();
Eval<Derived> eval() const EIGEN_ALWAYS_INLINE;
};
#endif // EIGEN_MATRIXBASE_H