mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-06-04 18:54:00 +08:00
352 lines
12 KiB
C++
352 lines
12 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra. Eigen itself is part of the KDE project.
|
|
//
|
|
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#ifndef EIGEN_TRIDIAGONALIZATION_H
|
|
#define EIGEN_TRIDIAGONALIZATION_H
|
|
|
|
/** \ingroup QR_Module
|
|
* \nonstableyet
|
|
*
|
|
* \class Tridiagonalization
|
|
*
|
|
* \brief Trigiagonal decomposition of a selfadjoint matrix
|
|
*
|
|
* \param MatrixType the type of the matrix of which we are performing the tridiagonalization
|
|
*
|
|
* This class performs a tridiagonal decomposition of a selfadjoint matrix \f$ A \f$ such that:
|
|
* \f$ A = Q T Q^* \f$ where \f$ Q \f$ is unitary and \f$ T \f$ a real symmetric tridiagonal matrix.
|
|
*
|
|
* \sa MatrixBase::tridiagonalize()
|
|
*/
|
|
template<typename _MatrixType> class Tridiagonalization
|
|
{
|
|
public:
|
|
|
|
typedef _MatrixType MatrixType;
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
|
typedef typename ei_packet_traits<Scalar>::type Packet;
|
|
|
|
enum {
|
|
Size = MatrixType::RowsAtCompileTime,
|
|
SizeMinusOne = MatrixType::RowsAtCompileTime==Dynamic
|
|
? Dynamic
|
|
: MatrixType::RowsAtCompileTime-1,
|
|
PacketSize = ei_packet_traits<Scalar>::size
|
|
};
|
|
|
|
typedef Matrix<Scalar, SizeMinusOne, 1> CoeffVectorType;
|
|
typedef Matrix<RealScalar, Size, 1> DiagonalType;
|
|
typedef Matrix<RealScalar, SizeMinusOne, 1> SubDiagonalType;
|
|
|
|
typedef typename NestByValue<DiagonalCoeffs<MatrixType> >::RealReturnType DiagonalReturnType;
|
|
|
|
typedef typename NestByValue<DiagonalCoeffs<
|
|
NestByValue<Block<MatrixType,SizeMinusOne,SizeMinusOne> > > >::RealReturnType SubDiagonalReturnType;
|
|
|
|
/** This constructor initializes a Tridiagonalization object for
|
|
* further use with Tridiagonalization::compute()
|
|
*/
|
|
Tridiagonalization(int size = Size==Dynamic ? 2 : Size)
|
|
: m_matrix(size,size), m_hCoeffs(size-1)
|
|
{}
|
|
|
|
Tridiagonalization(const MatrixType& matrix)
|
|
: m_matrix(matrix),
|
|
m_hCoeffs(matrix.cols()-1)
|
|
{
|
|
_compute(m_matrix, m_hCoeffs);
|
|
}
|
|
|
|
/** Computes or re-compute the tridiagonalization for the matrix \a matrix.
|
|
*
|
|
* This method allows to re-use the allocated data.
|
|
*/
|
|
void compute(const MatrixType& matrix)
|
|
{
|
|
m_matrix = matrix;
|
|
m_hCoeffs.resize(matrix.rows()-1, 1);
|
|
_compute(m_matrix, m_hCoeffs);
|
|
}
|
|
|
|
/** \returns the householder coefficients allowing to
|
|
* reconstruct the matrix Q from the packed data.
|
|
*
|
|
* \sa packedMatrix()
|
|
*/
|
|
inline CoeffVectorType householderCoefficients(void) const { return m_hCoeffs; }
|
|
|
|
/** \returns the internal result of the decomposition.
|
|
*
|
|
* The returned matrix contains the following information:
|
|
* - the strict upper part is equal to the input matrix A
|
|
* - the diagonal and lower sub-diagonal represent the tridiagonal symmetric matrix (real).
|
|
* - the rest of the lower part contains the Householder vectors that, combined with
|
|
* Householder coefficients returned by householderCoefficients(),
|
|
* allows to reconstruct the matrix Q as follow:
|
|
* Q = H_{N-1} ... H_1 H_0
|
|
* where the matrices H are the Householder transformations:
|
|
* H_i = (I - h_i * v_i * v_i')
|
|
* where h_i == householderCoefficients()[i] and v_i is a Householder vector:
|
|
* v_i = [ 0, ..., 0, 1, M(i+2,i), ..., M(N-1,i) ]
|
|
*
|
|
* See LAPACK for further details on this packed storage.
|
|
*/
|
|
inline const MatrixType& packedMatrix(void) const { return m_matrix; }
|
|
|
|
MatrixType matrixQ(void) const;
|
|
MatrixType matrixT(void) const;
|
|
const DiagonalReturnType diagonal(void) const;
|
|
const SubDiagonalReturnType subDiagonal(void) const;
|
|
|
|
static void decomposeInPlace(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ = true);
|
|
|
|
private:
|
|
|
|
static void _compute(MatrixType& matA, CoeffVectorType& hCoeffs);
|
|
|
|
static void _decomposeInPlace3x3(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ = true);
|
|
|
|
protected:
|
|
MatrixType m_matrix;
|
|
CoeffVectorType m_hCoeffs;
|
|
};
|
|
|
|
/** \returns an expression of the diagonal vector */
|
|
template<typename MatrixType>
|
|
const typename Tridiagonalization<MatrixType>::DiagonalReturnType
|
|
Tridiagonalization<MatrixType>::diagonal(void) const
|
|
{
|
|
return m_matrix.diagonal().nestByValue().real();
|
|
}
|
|
|
|
/** \returns an expression of the sub-diagonal vector */
|
|
template<typename MatrixType>
|
|
const typename Tridiagonalization<MatrixType>::SubDiagonalReturnType
|
|
Tridiagonalization<MatrixType>::subDiagonal(void) const
|
|
{
|
|
int n = m_matrix.rows();
|
|
return Block<MatrixType,SizeMinusOne,SizeMinusOne>(m_matrix, 1, 0, n-1,n-1)
|
|
.nestByValue().diagonal().nestByValue().real();
|
|
}
|
|
|
|
/** constructs and returns the tridiagonal matrix T.
|
|
* Note that the matrix T is equivalent to the diagonal and sub-diagonal of the packed matrix.
|
|
* Therefore, it might be often sufficient to directly use the packed matrix, or the vector
|
|
* expressions returned by diagonal() and subDiagonal() instead of creating a new matrix.
|
|
*/
|
|
template<typename MatrixType>
|
|
typename Tridiagonalization<MatrixType>::MatrixType
|
|
Tridiagonalization<MatrixType>::matrixT(void) const
|
|
{
|
|
// FIXME should this function (and other similar ones) rather take a matrix as argument
|
|
// and fill it ? (to avoid temporaries)
|
|
int n = m_matrix.rows();
|
|
MatrixType matT = m_matrix;
|
|
matT.corner(TopRight,n-1, n-1).diagonal() = subDiagonal().template cast<Scalar>().conjugate();
|
|
if (n>2)
|
|
{
|
|
matT.corner(TopRight,n-2, n-2).template part<UpperTriangular>().setZero();
|
|
matT.corner(BottomLeft,n-2, n-2).template part<LowerTriangular>().setZero();
|
|
}
|
|
return matT;
|
|
}
|
|
|
|
#ifndef EIGEN_HIDE_HEAVY_CODE
|
|
|
|
/** \internal
|
|
* Performs a tridiagonal decomposition of \a matA in place.
|
|
*
|
|
* \param matA the input selfadjoint matrix
|
|
* \param hCoeffs returned Householder coefficients
|
|
*
|
|
* The result is written in the lower triangular part of \a matA.
|
|
*
|
|
* Implemented from Golub's "Matrix Computations", algorithm 8.3.1.
|
|
*
|
|
* \sa packedMatrix()
|
|
*/
|
|
template<typename MatrixType>
|
|
void Tridiagonalization<MatrixType>::_compute(MatrixType& matA, CoeffVectorType& hCoeffs)
|
|
{
|
|
assert(matA.rows()==matA.cols());
|
|
int n = matA.rows();
|
|
// std::cerr << matA << "\n\n";
|
|
for (int i = 0; i<n-2; ++i)
|
|
{
|
|
// let's consider the vector v = i-th column starting at position i+1
|
|
|
|
// start of the householder transformation
|
|
// squared norm of the vector v skipping the first element
|
|
RealScalar v1norm2 = matA.col(i).end(n-(i+2)).squaredNorm();
|
|
|
|
if (ei_isMuchSmallerThan(v1norm2,static_cast<Scalar>(1)))
|
|
{
|
|
hCoeffs.coeffRef(i) = 0.;
|
|
}
|
|
else
|
|
{
|
|
Scalar v0 = matA.col(i).coeff(i+1);
|
|
RealScalar beta = ei_sqrt(ei_abs2(v0)+v1norm2);
|
|
if (ei_real(v0)>=0.)
|
|
beta = -beta;
|
|
matA.col(i).end(n-(i+2)) *= (Scalar(1)/(v0-beta));
|
|
matA.col(i).coeffRef(i+1) = beta;
|
|
Scalar h = (beta - v0) / beta;
|
|
// end of the householder transformation
|
|
|
|
// Apply similarity transformation to remaining columns,
|
|
// i.e., A = H' A H where H = I - h v v' and v = matA.col(i).end(n-i-1)
|
|
|
|
matA.col(i).coeffRef(i+1) = 1;
|
|
Scalar* EIGEN_RESTRICT t = &hCoeffs.coeffRef(-1);
|
|
|
|
// hCoeffs.end(n-i-1) = (matA.corner(BottomRight,n-i-1,n-i-1).template part<LowerTriangular|SelfAdjoint>()
|
|
// * matA.col(i).end(n-i-1)).lazy();
|
|
// TODO map the above code to the function call below:
|
|
ei_product_selfadjoint_vector<Scalar,MatrixType::Flags&RowMajorBit,LowerTriangularBit>
|
|
(n-i-1,matA.corner(BottomRight,n-i-1,n-i-1).data(), matA.stride(), matA.col(i).end(n-i-1).data(), const_cast<Scalar*>(hCoeffs.end(n-i-1).data()));
|
|
|
|
hCoeffs.end(n-i-1) = hCoeffs.end(n-i-1)*h
|
|
+ (h*ei_conj(h)*Scalar(-0.5)*matA.col(i).end(n-i-1).dot(hCoeffs.end(n-i-1))) *
|
|
matA.col(i).end(n-i-1);
|
|
|
|
// symmetric rank-2 update
|
|
for (int j1=i+1; j1<n; ++j1)
|
|
matA.col(j1).end(n-j1) -= matA.col(i).end(n-j1) * ei_conj(hCoeffs.coeff(j1-1))
|
|
+ hCoeffs.end(n-j1) * ei_conj(matA.coeff(j1,i));
|
|
|
|
// note: at that point matA(i+1,i+1) is the (i+1)-th element of the final diagonal
|
|
// note: the sequence of the beta values leads to the subdiagonal entries
|
|
matA.col(i).coeffRef(i+1) = beta;
|
|
|
|
hCoeffs.coeffRef(i) = h;
|
|
}
|
|
}
|
|
if (NumTraits<Scalar>::IsComplex)
|
|
{
|
|
// Householder transformation on the remaining single scalar
|
|
int i = n-2;
|
|
Scalar v0 = matA.col(i).coeff(i+1);
|
|
RealScalar beta = ei_abs(v0);
|
|
if (ei_real(v0)>=0.)
|
|
beta = -beta;
|
|
matA.col(i).coeffRef(i+1) = beta;
|
|
hCoeffs.coeffRef(i) = (beta - v0) / beta;
|
|
}
|
|
else
|
|
{
|
|
hCoeffs.coeffRef(n-2) = 0;
|
|
}
|
|
}
|
|
|
|
/** reconstructs and returns the matrix Q */
|
|
template<typename MatrixType>
|
|
typename Tridiagonalization<MatrixType>::MatrixType
|
|
Tridiagonalization<MatrixType>::matrixQ(void) const
|
|
{
|
|
int n = m_matrix.rows();
|
|
MatrixType matQ = MatrixType::Identity(n,n);
|
|
for (int i = n-2; i>=0; i--)
|
|
{
|
|
Scalar tmp = m_matrix.coeff(i+1,i);
|
|
m_matrix.const_cast_derived().coeffRef(i+1,i) = 1;
|
|
|
|
matQ.corner(BottomRight,n-i-1,n-i-1) -=
|
|
((m_hCoeffs.coeff(i) * m_matrix.col(i).end(n-i-1)) *
|
|
(m_matrix.col(i).end(n-i-1).adjoint() * matQ.corner(BottomRight,n-i-1,n-i-1)).lazy()).lazy();
|
|
|
|
m_matrix.const_cast_derived().coeffRef(i+1,i) = tmp;
|
|
}
|
|
return matQ;
|
|
}
|
|
|
|
/** Performs a full decomposition in place */
|
|
template<typename MatrixType>
|
|
void Tridiagonalization<MatrixType>::decomposeInPlace(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ)
|
|
{
|
|
int n = mat.rows();
|
|
ei_assert(mat.cols()==n && diag.size()==n && subdiag.size()==n-1);
|
|
if (n==3 && (!NumTraits<Scalar>::IsComplex) )
|
|
{
|
|
_decomposeInPlace3x3(mat, diag, subdiag, extractQ);
|
|
}
|
|
else
|
|
{
|
|
Tridiagonalization tridiag(mat);
|
|
diag = tridiag.diagonal();
|
|
subdiag = tridiag.subDiagonal();
|
|
if (extractQ)
|
|
mat = tridiag.matrixQ();
|
|
}
|
|
}
|
|
|
|
/** \internal
|
|
* Optimized path for 3x3 matrices.
|
|
* Especially useful for plane fitting.
|
|
*/
|
|
template<typename MatrixType>
|
|
void Tridiagonalization<MatrixType>::_decomposeInPlace3x3(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ)
|
|
{
|
|
diag[0] = ei_real(mat(0,0));
|
|
RealScalar v1norm2 = ei_abs2(mat(0,2));
|
|
if (ei_isMuchSmallerThan(v1norm2, RealScalar(1)))
|
|
{
|
|
diag[1] = ei_real(mat(1,1));
|
|
diag[2] = ei_real(mat(2,2));
|
|
subdiag[0] = ei_real(mat(0,1));
|
|
subdiag[1] = ei_real(mat(1,2));
|
|
if (extractQ)
|
|
mat.setIdentity();
|
|
}
|
|
else
|
|
{
|
|
RealScalar beta = ei_sqrt(ei_abs2(mat(0,1))+v1norm2);
|
|
RealScalar invBeta = RealScalar(1)/beta;
|
|
Scalar m01 = mat(0,1) * invBeta;
|
|
Scalar m02 = mat(0,2) * invBeta;
|
|
Scalar q = RealScalar(2)*m01*mat(1,2) + m02*(mat(2,2) - mat(1,1));
|
|
diag[1] = ei_real(mat(1,1) + m02*q);
|
|
diag[2] = ei_real(mat(2,2) - m02*q);
|
|
subdiag[0] = beta;
|
|
subdiag[1] = ei_real(mat(1,2) - m01 * q);
|
|
if (extractQ)
|
|
{
|
|
mat(0,0) = 1;
|
|
mat(0,1) = 0;
|
|
mat(0,2) = 0;
|
|
mat(1,0) = 0;
|
|
mat(1,1) = m01;
|
|
mat(1,2) = m02;
|
|
mat(2,0) = 0;
|
|
mat(2,1) = m02;
|
|
mat(2,2) = -m01;
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif // EIGEN_HIDE_HEAVY_CODE
|
|
|
|
#endif // EIGEN_TRIDIAGONALIZATION_H
|