eigen/Eigen/src/QR/Tridiagonalization.h

352 lines
12 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_TRIDIAGONALIZATION_H
#define EIGEN_TRIDIAGONALIZATION_H
/** \ingroup QR_Module
* \nonstableyet
*
* \class Tridiagonalization
*
* \brief Trigiagonal decomposition of a selfadjoint matrix
*
* \param MatrixType the type of the matrix of which we are performing the tridiagonalization
*
* This class performs a tridiagonal decomposition of a selfadjoint matrix \f$ A \f$ such that:
* \f$ A = Q T Q^* \f$ where \f$ Q \f$ is unitary and \f$ T \f$ a real symmetric tridiagonal matrix.
*
* \sa MatrixBase::tridiagonalize()
*/
template<typename _MatrixType> class Tridiagonalization
{
public:
typedef _MatrixType MatrixType;
typedef typename MatrixType::Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef typename ei_packet_traits<Scalar>::type Packet;
enum {
Size = MatrixType::RowsAtCompileTime,
SizeMinusOne = MatrixType::RowsAtCompileTime==Dynamic
? Dynamic
: MatrixType::RowsAtCompileTime-1,
PacketSize = ei_packet_traits<Scalar>::size
};
typedef Matrix<Scalar, SizeMinusOne, 1> CoeffVectorType;
typedef Matrix<RealScalar, Size, 1> DiagonalType;
typedef Matrix<RealScalar, SizeMinusOne, 1> SubDiagonalType;
typedef typename NestByValue<DiagonalCoeffs<MatrixType> >::RealReturnType DiagonalReturnType;
typedef typename NestByValue<DiagonalCoeffs<
NestByValue<Block<MatrixType,SizeMinusOne,SizeMinusOne> > > >::RealReturnType SubDiagonalReturnType;
/** This constructor initializes a Tridiagonalization object for
* further use with Tridiagonalization::compute()
*/
Tridiagonalization(int size = Size==Dynamic ? 2 : Size)
: m_matrix(size,size), m_hCoeffs(size-1)
{}
Tridiagonalization(const MatrixType& matrix)
: m_matrix(matrix),
m_hCoeffs(matrix.cols()-1)
{
_compute(m_matrix, m_hCoeffs);
}
/** Computes or re-compute the tridiagonalization for the matrix \a matrix.
*
* This method allows to re-use the allocated data.
*/
void compute(const MatrixType& matrix)
{
m_matrix = matrix;
m_hCoeffs.resize(matrix.rows()-1, 1);
_compute(m_matrix, m_hCoeffs);
}
/** \returns the householder coefficients allowing to
* reconstruct the matrix Q from the packed data.
*
* \sa packedMatrix()
*/
inline CoeffVectorType householderCoefficients(void) const { return m_hCoeffs; }
/** \returns the internal result of the decomposition.
*
* The returned matrix contains the following information:
* - the strict upper part is equal to the input matrix A
* - the diagonal and lower sub-diagonal represent the tridiagonal symmetric matrix (real).
* - the rest of the lower part contains the Householder vectors that, combined with
* Householder coefficients returned by householderCoefficients(),
* allows to reconstruct the matrix Q as follow:
* Q = H_{N-1} ... H_1 H_0
* where the matrices H are the Householder transformations:
* H_i = (I - h_i * v_i * v_i')
* where h_i == householderCoefficients()[i] and v_i is a Householder vector:
* v_i = [ 0, ..., 0, 1, M(i+2,i), ..., M(N-1,i) ]
*
* See LAPACK for further details on this packed storage.
*/
inline const MatrixType& packedMatrix(void) const { return m_matrix; }
MatrixType matrixQ(void) const;
MatrixType matrixT(void) const;
const DiagonalReturnType diagonal(void) const;
const SubDiagonalReturnType subDiagonal(void) const;
static void decomposeInPlace(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ = true);
private:
static void _compute(MatrixType& matA, CoeffVectorType& hCoeffs);
static void _decomposeInPlace3x3(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ = true);
protected:
MatrixType m_matrix;
CoeffVectorType m_hCoeffs;
};
/** \returns an expression of the diagonal vector */
template<typename MatrixType>
const typename Tridiagonalization<MatrixType>::DiagonalReturnType
Tridiagonalization<MatrixType>::diagonal(void) const
{
return m_matrix.diagonal().nestByValue().real();
}
/** \returns an expression of the sub-diagonal vector */
template<typename MatrixType>
const typename Tridiagonalization<MatrixType>::SubDiagonalReturnType
Tridiagonalization<MatrixType>::subDiagonal(void) const
{
int n = m_matrix.rows();
return Block<MatrixType,SizeMinusOne,SizeMinusOne>(m_matrix, 1, 0, n-1,n-1)
.nestByValue().diagonal().nestByValue().real();
}
/** constructs and returns the tridiagonal matrix T.
* Note that the matrix T is equivalent to the diagonal and sub-diagonal of the packed matrix.
* Therefore, it might be often sufficient to directly use the packed matrix, or the vector
* expressions returned by diagonal() and subDiagonal() instead of creating a new matrix.
*/
template<typename MatrixType>
typename Tridiagonalization<MatrixType>::MatrixType
Tridiagonalization<MatrixType>::matrixT(void) const
{
// FIXME should this function (and other similar ones) rather take a matrix as argument
// and fill it ? (to avoid temporaries)
int n = m_matrix.rows();
MatrixType matT = m_matrix;
matT.corner(TopRight,n-1, n-1).diagonal() = subDiagonal().template cast<Scalar>().conjugate();
if (n>2)
{
matT.corner(TopRight,n-2, n-2).template part<UpperTriangular>().setZero();
matT.corner(BottomLeft,n-2, n-2).template part<LowerTriangular>().setZero();
}
return matT;
}
#ifndef EIGEN_HIDE_HEAVY_CODE
/** \internal
* Performs a tridiagonal decomposition of \a matA in place.
*
* \param matA the input selfadjoint matrix
* \param hCoeffs returned Householder coefficients
*
* The result is written in the lower triangular part of \a matA.
*
* Implemented from Golub's "Matrix Computations", algorithm 8.3.1.
*
* \sa packedMatrix()
*/
template<typename MatrixType>
void Tridiagonalization<MatrixType>::_compute(MatrixType& matA, CoeffVectorType& hCoeffs)
{
assert(matA.rows()==matA.cols());
int n = matA.rows();
// std::cerr << matA << "\n\n";
for (int i = 0; i<n-2; ++i)
{
// let's consider the vector v = i-th column starting at position i+1
// start of the householder transformation
// squared norm of the vector v skipping the first element
RealScalar v1norm2 = matA.col(i).end(n-(i+2)).squaredNorm();
if (ei_isMuchSmallerThan(v1norm2,static_cast<Scalar>(1)))
{
hCoeffs.coeffRef(i) = 0.;
}
else
{
Scalar v0 = matA.col(i).coeff(i+1);
RealScalar beta = ei_sqrt(ei_abs2(v0)+v1norm2);
if (ei_real(v0)>=0.)
beta = -beta;
matA.col(i).end(n-(i+2)) *= (Scalar(1)/(v0-beta));
matA.col(i).coeffRef(i+1) = beta;
Scalar h = (beta - v0) / beta;
// end of the householder transformation
// Apply similarity transformation to remaining columns,
// i.e., A = H' A H where H = I - h v v' and v = matA.col(i).end(n-i-1)
matA.col(i).coeffRef(i+1) = 1;
Scalar* EIGEN_RESTRICT t = &hCoeffs.coeffRef(-1);
// hCoeffs.end(n-i-1) = (matA.corner(BottomRight,n-i-1,n-i-1).template part<LowerTriangular|SelfAdjoint>()
// * matA.col(i).end(n-i-1)).lazy();
// TODO map the above code to the function call below:
ei_product_selfadjoint_vector<Scalar,MatrixType::Flags&RowMajorBit,LowerTriangularBit>
(n-i-1,matA.corner(BottomRight,n-i-1,n-i-1).data(), matA.stride(), matA.col(i).end(n-i-1).data(), const_cast<Scalar*>(hCoeffs.end(n-i-1).data()));
hCoeffs.end(n-i-1) = hCoeffs.end(n-i-1)*h
+ (h*ei_conj(h)*Scalar(-0.5)*matA.col(i).end(n-i-1).dot(hCoeffs.end(n-i-1))) *
matA.col(i).end(n-i-1);
// symmetric rank-2 update
for (int j1=i+1; j1<n; ++j1)
matA.col(j1).end(n-j1) -= matA.col(i).end(n-j1) * ei_conj(hCoeffs.coeff(j1-1))
+ hCoeffs.end(n-j1) * ei_conj(matA.coeff(j1,i));
// note: at that point matA(i+1,i+1) is the (i+1)-th element of the final diagonal
// note: the sequence of the beta values leads to the subdiagonal entries
matA.col(i).coeffRef(i+1) = beta;
hCoeffs.coeffRef(i) = h;
}
}
if (NumTraits<Scalar>::IsComplex)
{
// Householder transformation on the remaining single scalar
int i = n-2;
Scalar v0 = matA.col(i).coeff(i+1);
RealScalar beta = ei_abs(v0);
if (ei_real(v0)>=0.)
beta = -beta;
matA.col(i).coeffRef(i+1) = beta;
hCoeffs.coeffRef(i) = (beta - v0) / beta;
}
else
{
hCoeffs.coeffRef(n-2) = 0;
}
}
/** reconstructs and returns the matrix Q */
template<typename MatrixType>
typename Tridiagonalization<MatrixType>::MatrixType
Tridiagonalization<MatrixType>::matrixQ(void) const
{
int n = m_matrix.rows();
MatrixType matQ = MatrixType::Identity(n,n);
for (int i = n-2; i>=0; i--)
{
Scalar tmp = m_matrix.coeff(i+1,i);
m_matrix.const_cast_derived().coeffRef(i+1,i) = 1;
matQ.corner(BottomRight,n-i-1,n-i-1) -=
((m_hCoeffs.coeff(i) * m_matrix.col(i).end(n-i-1)) *
(m_matrix.col(i).end(n-i-1).adjoint() * matQ.corner(BottomRight,n-i-1,n-i-1)).lazy()).lazy();
m_matrix.const_cast_derived().coeffRef(i+1,i) = tmp;
}
return matQ;
}
/** Performs a full decomposition in place */
template<typename MatrixType>
void Tridiagonalization<MatrixType>::decomposeInPlace(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ)
{
int n = mat.rows();
ei_assert(mat.cols()==n && diag.size()==n && subdiag.size()==n-1);
if (n==3 && (!NumTraits<Scalar>::IsComplex) )
{
_decomposeInPlace3x3(mat, diag, subdiag, extractQ);
}
else
{
Tridiagonalization tridiag(mat);
diag = tridiag.diagonal();
subdiag = tridiag.subDiagonal();
if (extractQ)
mat = tridiag.matrixQ();
}
}
/** \internal
* Optimized path for 3x3 matrices.
* Especially useful for plane fitting.
*/
template<typename MatrixType>
void Tridiagonalization<MatrixType>::_decomposeInPlace3x3(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ)
{
diag[0] = ei_real(mat(0,0));
RealScalar v1norm2 = ei_abs2(mat(0,2));
if (ei_isMuchSmallerThan(v1norm2, RealScalar(1)))
{
diag[1] = ei_real(mat(1,1));
diag[2] = ei_real(mat(2,2));
subdiag[0] = ei_real(mat(0,1));
subdiag[1] = ei_real(mat(1,2));
if (extractQ)
mat.setIdentity();
}
else
{
RealScalar beta = ei_sqrt(ei_abs2(mat(0,1))+v1norm2);
RealScalar invBeta = RealScalar(1)/beta;
Scalar m01 = mat(0,1) * invBeta;
Scalar m02 = mat(0,2) * invBeta;
Scalar q = RealScalar(2)*m01*mat(1,2) + m02*(mat(2,2) - mat(1,1));
diag[1] = ei_real(mat(1,1) + m02*q);
diag[2] = ei_real(mat(2,2) - m02*q);
subdiag[0] = beta;
subdiag[1] = ei_real(mat(1,2) - m01 * q);
if (extractQ)
{
mat(0,0) = 1;
mat(0,1) = 0;
mat(0,2) = 0;
mat(1,0) = 0;
mat(1,1) = m01;
mat(1,2) = m02;
mat(2,0) = 0;
mat(2,1) = m02;
mat(2,2) = -m01;
}
}
}
#endif // EIGEN_HIDE_HEAVY_CODE
#endif // EIGEN_TRIDIAGONALIZATION_H