2011-01-28 16:30:21 +01:00

657 lines
20 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_SUPERLUSUPPORT_H
#define EIGEN_SUPERLUSUPPORT_H
// declaration of gssvx taken from GMM++
#define DECL_GSSVX(NAMESPACE,FNAME,FLOATTYPE,KEYTYPE) \
inline float SuperLU_gssvx(superlu_options_t *options, SuperMatrix *A, \
int *perm_c, int *perm_r, int *etree, char *equed, \
FLOATTYPE *R, FLOATTYPE *C, SuperMatrix *L, \
SuperMatrix *U, void *work, int lwork, \
SuperMatrix *B, SuperMatrix *X, \
FLOATTYPE *recip_pivot_growth, \
FLOATTYPE *rcond, FLOATTYPE *ferr, FLOATTYPE *berr, \
SuperLUStat_t *stats, int *info, KEYTYPE) { \
using namespace NAMESPACE; \
mem_usage_t mem_usage; \
NAMESPACE::FNAME(options, A, perm_c, perm_r, etree, equed, R, C, L, \
U, work, lwork, B, X, recip_pivot_growth, rcond, \
ferr, berr, &mem_usage, stats, info); \
return mem_usage.for_lu; /* bytes used by the factor storage */ \
}
DECL_GSSVX(SuperLU_S,sgssvx,float,float)
DECL_GSSVX(SuperLU_C,cgssvx,float,std::complex<float>)
DECL_GSSVX(SuperLU_D,dgssvx,double,double)
DECL_GSSVX(SuperLU_Z,zgssvx,double,std::complex<double>)
#ifdef MILU_ALPHA
#define EIGEN_SUPERLU_HAS_ILU
#endif
#ifdef EIGEN_SUPERLU_HAS_ILU
// similarly for the incomplete factorization using gsisx
#define DECL_GSISX(NAMESPACE,FNAME,FLOATTYPE,KEYTYPE) \
inline float SuperLU_gsisx(superlu_options_t *options, SuperMatrix *A, \
int *perm_c, int *perm_r, int *etree, char *equed, \
FLOATTYPE *R, FLOATTYPE *C, SuperMatrix *L, \
SuperMatrix *U, void *work, int lwork, \
SuperMatrix *B, SuperMatrix *X, \
FLOATTYPE *recip_pivot_growth, \
FLOATTYPE *rcond, \
SuperLUStat_t *stats, int *info, KEYTYPE) { \
using namespace NAMESPACE; \
mem_usage_t mem_usage; \
NAMESPACE::FNAME(options, A, perm_c, perm_r, etree, equed, R, C, L, \
U, work, lwork, B, X, recip_pivot_growth, rcond, \
&mem_usage, stats, info); \
return mem_usage.for_lu; /* bytes used by the factor storage */ \
}
DECL_GSISX(SuperLU_S,sgsisx,float,float)
DECL_GSISX(SuperLU_C,cgsisx,float,std::complex<float>)
DECL_GSISX(SuperLU_D,dgsisx,double,double)
DECL_GSISX(SuperLU_Z,zgsisx,double,std::complex<double>)
#endif
template<typename MatrixType>
struct SluMatrixMapHelper;
/** \internal
*
* A wrapper class for SuperLU matrices. It supports only compressed sparse matrices
* and dense matrices. Supernodal and other fancy format are not supported by this wrapper.
*
* This wrapper class mainly aims to avoids the need of dynamic allocation of the storage structure.
*/
struct SluMatrix : SuperMatrix
{
SluMatrix()
{
Store = &storage;
}
SluMatrix(const SluMatrix& other)
: SuperMatrix(other)
{
Store = &storage;
storage = other.storage;
}
SluMatrix& operator=(const SluMatrix& other)
{
SuperMatrix::operator=(static_cast<const SuperMatrix&>(other));
Store = &storage;
storage = other.storage;
return *this;
}
struct
{
union {int nnz;int lda;};
void *values;
int *innerInd;
int *outerInd;
} storage;
void setStorageType(Stype_t t)
{
Stype = t;
if (t==SLU_NC || t==SLU_NR || t==SLU_DN)
Store = &storage;
else
{
eigen_assert(false && "storage type not supported");
Store = 0;
}
}
template<typename Scalar>
void setScalarType()
{
if (internal::is_same<Scalar,float>::value)
Dtype = SLU_S;
else if (internal::is_same<Scalar,double>::value)
Dtype = SLU_D;
else if (internal::is_same<Scalar,std::complex<float> >::value)
Dtype = SLU_C;
else if (internal::is_same<Scalar,std::complex<double> >::value)
Dtype = SLU_Z;
else
{
eigen_assert(false && "Scalar type not supported by SuperLU");
}
}
template<typename Scalar, int Rows, int Cols, int Options, int MRows, int MCols>
static SluMatrix Map(Matrix<Scalar,Rows,Cols,Options,MRows,MCols>& mat)
{
typedef Matrix<Scalar,Rows,Cols,Options,MRows,MCols> MatrixType;
eigen_assert( ((Options&RowMajor)!=RowMajor) && "row-major dense matrices is not supported by SuperLU");
SluMatrix res;
res.setStorageType(SLU_DN);
res.setScalarType<Scalar>();
res.Mtype = SLU_GE;
res.nrow = mat.rows();
res.ncol = mat.cols();
res.storage.lda = MatrixType::IsVectorAtCompileTime ? mat.size() : mat.outerStride();
res.storage.values = mat.data();
return res;
}
template<typename MatrixType>
static SluMatrix Map(SparseMatrixBase<MatrixType>& mat)
{
SluMatrix res;
if ((MatrixType::Flags&RowMajorBit)==RowMajorBit)
{
res.setStorageType(SLU_NR);
res.nrow = mat.cols();
res.ncol = mat.rows();
}
else
{
res.setStorageType(SLU_NC);
res.nrow = mat.rows();
res.ncol = mat.cols();
}
res.Mtype = SLU_GE;
res.storage.nnz = mat.nonZeros();
res.storage.values = mat.derived()._valuePtr();
res.storage.innerInd = mat.derived()._innerIndexPtr();
res.storage.outerInd = mat.derived()._outerIndexPtr();
res.setScalarType<typename MatrixType::Scalar>();
// FIXME the following is not very accurate
if (MatrixType::Flags & Upper)
res.Mtype = SLU_TRU;
if (MatrixType::Flags & Lower)
res.Mtype = SLU_TRL;
if (MatrixType::Flags & SelfAdjoint)
eigen_assert(false && "SelfAdjoint matrix shape not supported by SuperLU");
return res;
}
};
template<typename Scalar, int Rows, int Cols, int Options, int MRows, int MCols>
struct SluMatrixMapHelper<Matrix<Scalar,Rows,Cols,Options,MRows,MCols> >
{
typedef Matrix<Scalar,Rows,Cols,Options,MRows,MCols> MatrixType;
static void run(MatrixType& mat, SluMatrix& res)
{
eigen_assert( ((Options&RowMajor)!=RowMajor) && "row-major dense matrices is not supported by SuperLU");
res.setStorageType(SLU_DN);
res.setScalarType<Scalar>();
res.Mtype = SLU_GE;
res.nrow = mat.rows();
res.ncol = mat.cols();
res.storage.lda = mat.outerStride();
res.storage.values = mat.data();
}
};
template<typename Derived>
struct SluMatrixMapHelper<SparseMatrixBase<Derived> >
{
typedef Derived MatrixType;
static void run(MatrixType& mat, SluMatrix& res)
{
if ((MatrixType::Flags&RowMajorBit)==RowMajorBit)
{
res.setStorageType(SLU_NR);
res.nrow = mat.cols();
res.ncol = mat.rows();
}
else
{
res.setStorageType(SLU_NC);
res.nrow = mat.rows();
res.ncol = mat.cols();
}
res.Mtype = SLU_GE;
res.storage.nnz = mat.nonZeros();
res.storage.values = mat._valuePtr();
res.storage.innerInd = mat._innerIndexPtr();
res.storage.outerInd = mat._outerIndexPtr();
res.setScalarType<typename MatrixType::Scalar>();
// FIXME the following is not very accurate
if (MatrixType::Flags & Upper)
res.Mtype = SLU_TRU;
if (MatrixType::Flags & Lower)
res.Mtype = SLU_TRL;
if (MatrixType::Flags & SelfAdjoint)
eigen_assert(false && "SelfAdjoint matrix shape not supported by SuperLU");
}
};
namespace internal {
template<typename MatrixType>
SluMatrix asSluMatrix(MatrixType& mat)
{
return SluMatrix::Map(mat);
}
/** View a Super LU matrix as an Eigen expression */
template<typename Scalar, int Flags, typename Index>
MappedSparseMatrix<Scalar,Flags,Index> map_superlu(SluMatrix& sluMat)
{
eigen_assert((Flags&RowMajor)==RowMajor && sluMat.Stype == SLU_NR
|| (Flags&ColMajor)==ColMajor && sluMat.Stype == SLU_NC);
Index outerSize = (Flags&RowMajor)==RowMajor ? sluMat.ncol : sluMat.nrow;
return MappedSparseMatrix<Scalar,Flags,Index>(
sluMat.nrow, sluMat.ncol, sluMat.storage.outerInd[outerSize],
sluMat.storage.outerInd, sluMat.storage.innerInd, reinterpret_cast<Scalar*>(sluMat.storage.values) );
}
} // end namespace internal
template<typename MatrixType>
class SparseLU<MatrixType,SuperLU> : public SparseLU<MatrixType>
{
protected:
typedef SparseLU<MatrixType> Base;
typedef typename Base::Scalar Scalar;
typedef typename Base::RealScalar RealScalar;
typedef Matrix<Scalar,Dynamic,1> Vector;
typedef Matrix<int, 1, MatrixType::ColsAtCompileTime> IntRowVectorType;
typedef Matrix<int, MatrixType::RowsAtCompileTime, 1> IntColVectorType;
typedef SparseMatrix<Scalar,Lower|UnitDiag> LMatrixType;
typedef SparseMatrix<Scalar,Upper> UMatrixType;
using Base::m_flags;
using Base::m_status;
public:
SparseLU(int flags = NaturalOrdering)
: Base(flags)
{
}
SparseLU(const MatrixType& matrix, int flags = NaturalOrdering)
: Base(flags)
{
compute(matrix);
}
~SparseLU()
{
Destroy_SuperNode_Matrix(&m_sluL);
Destroy_CompCol_Matrix(&m_sluU);
}
inline const LMatrixType& matrixL() const
{
if (m_extractedDataAreDirty) extractData();
return m_l;
}
inline const UMatrixType& matrixU() const
{
if (m_extractedDataAreDirty) extractData();
return m_u;
}
inline const IntColVectorType& permutationP() const
{
if (m_extractedDataAreDirty) extractData();
return m_p;
}
inline const IntRowVectorType& permutationQ() const
{
if (m_extractedDataAreDirty) extractData();
return m_q;
}
Scalar determinant() const;
template<typename BDerived, typename XDerived>
bool solve(const MatrixBase<BDerived> &b, MatrixBase<XDerived>* x, const int transposed = SvNoTrans) const;
void compute(const MatrixType& matrix);
protected:
void extractData() const;
protected:
// cached data to reduce reallocation, etc.
mutable LMatrixType m_l;
mutable UMatrixType m_u;
mutable IntColVectorType m_p;
mutable IntRowVectorType m_q;
mutable SparseMatrix<Scalar> m_matrix;
mutable SluMatrix m_sluA;
mutable SuperMatrix m_sluL, m_sluU;
mutable SluMatrix m_sluB, m_sluX;
mutable SuperLUStat_t m_sluStat;
mutable superlu_options_t m_sluOptions;
mutable std::vector<int> m_sluEtree;
mutable std::vector<RealScalar> m_sluRscale, m_sluCscale;
mutable std::vector<RealScalar> m_sluFerr, m_sluBerr;
mutable char m_sluEqued;
mutable bool m_extractedDataAreDirty;
};
template<typename MatrixType>
void SparseLU<MatrixType,SuperLU>::compute(const MatrixType& a)
{
const int size = a.rows();
m_matrix = a;
set_default_options(&m_sluOptions);
m_sluOptions.ColPerm = NATURAL;
m_sluOptions.PrintStat = NO;
m_sluOptions.ConditionNumber = NO;
m_sluOptions.Trans = NOTRANS;
// m_sluOptions.Equil = NO;
switch (Base::orderingMethod())
{
case NaturalOrdering : m_sluOptions.ColPerm = NATURAL; break;
case MinimumDegree_AT_PLUS_A : m_sluOptions.ColPerm = MMD_AT_PLUS_A; break;
case MinimumDegree_ATA : m_sluOptions.ColPerm = MMD_ATA; break;
case ColApproxMinimumDegree : m_sluOptions.ColPerm = COLAMD; break;
default:
//std::cerr << "Eigen: ordering method \"" << Base::orderingMethod() << "\" not supported by the SuperLU backend\n";
m_sluOptions.ColPerm = NATURAL;
};
m_sluA = internal::asSluMatrix(m_matrix);
memset(&m_sluL,0,sizeof m_sluL);
memset(&m_sluU,0,sizeof m_sluU);
//m_sluEqued = 'B';
int info = 0;
m_p.resize(size);
m_q.resize(size);
m_sluRscale.resize(size);
m_sluCscale.resize(size);
m_sluEtree.resize(size);
RealScalar recip_pivot_gross, rcond;
RealScalar ferr, berr;
// set empty B and X
m_sluB.setStorageType(SLU_DN);
m_sluB.setScalarType<Scalar>();
m_sluB.Mtype = SLU_GE;
m_sluB.storage.values = 0;
m_sluB.nrow = m_sluB.ncol = 0;
m_sluB.storage.lda = size;
m_sluX = m_sluB;
StatInit(&m_sluStat);
if (m_flags&IncompleteFactorization)
{
#ifdef EIGEN_SUPERLU_HAS_ILU
ilu_set_default_options(&m_sluOptions);
// no attempt to preserve column sum
m_sluOptions.ILU_MILU = SILU;
// only basic ILU(k) support -- no direct control over memory consumption
// better to use ILU_DropRule = DROP_BASIC | DROP_AREA
// and set ILU_FillFactor to max memory growth
m_sluOptions.ILU_DropRule = DROP_BASIC;
m_sluOptions.ILU_DropTol = Base::m_precision;
SuperLU_gsisx(&m_sluOptions, &m_sluA, m_q.data(), m_p.data(), &m_sluEtree[0],
&m_sluEqued, &m_sluRscale[0], &m_sluCscale[0],
&m_sluL, &m_sluU,
NULL, 0,
&m_sluB, &m_sluX,
&recip_pivot_gross, &rcond,
&m_sluStat, &info, Scalar());
#else
//std::cerr << "Incomplete factorization is only available in SuperLU v4\n";
Base::m_succeeded = false;
return;
#endif
}
else
{
SuperLU_gssvx(&m_sluOptions, &m_sluA, m_q.data(), m_p.data(), &m_sluEtree[0],
&m_sluEqued, &m_sluRscale[0], &m_sluCscale[0],
&m_sluL, &m_sluU,
NULL, 0,
&m_sluB, &m_sluX,
&recip_pivot_gross, &rcond,
&ferr, &berr,
&m_sluStat, &info, Scalar());
}
StatFree(&m_sluStat);
m_extractedDataAreDirty = true;
// FIXME how to better check for errors ???
Base::m_succeeded = (info == 0);
}
template<typename MatrixType>
template<typename BDerived,typename XDerived>
bool SparseLU<MatrixType,SuperLU>::solve(const MatrixBase<BDerived> &b,
MatrixBase<XDerived> *x, const int transposed) const
{
const int size = m_matrix.rows();
const int rhsCols = b.cols();
eigen_assert(size==b.rows());
switch (transposed) {
case SvNoTrans : m_sluOptions.Trans = NOTRANS; break;
case SvTranspose : m_sluOptions.Trans = TRANS; break;
case SvAdjoint : m_sluOptions.Trans = CONJ; break;
default:
//std::cerr << "Eigen: transposition option \"" << transposed << "\" not supported by the SuperLU backend\n";
m_sluOptions.Trans = NOTRANS;
}
m_sluOptions.Fact = FACTORED;
m_sluOptions.IterRefine = NOREFINE;
m_sluFerr.resize(rhsCols);
m_sluBerr.resize(rhsCols);
m_sluB = SluMatrix::Map(b.const_cast_derived());
m_sluX = SluMatrix::Map(x->derived());
StatInit(&m_sluStat);
int info = 0;
RealScalar recip_pivot_gross, rcond;
if (m_flags&IncompleteFactorization)
{
#ifdef EIGEN_SUPERLU_HAS_ILU
SuperLU_gsisx(&m_sluOptions, &m_sluA, m_q.data(), m_p.data(), &m_sluEtree[0],
&m_sluEqued, &m_sluRscale[0], &m_sluCscale[0],
&m_sluL, &m_sluU,
NULL, 0,
&m_sluB, &m_sluX,
&recip_pivot_gross, &rcond,
&m_sluStat, &info, Scalar());
#else
//std::cerr << "Incomplete factorization is only available in SuperLU v4\n";
return false;
#endif
}
else
{
SuperLU_gssvx(
&m_sluOptions, &m_sluA,
m_q.data(), m_p.data(),
&m_sluEtree[0], &m_sluEqued,
&m_sluRscale[0], &m_sluCscale[0],
&m_sluL, &m_sluU,
NULL, 0,
&m_sluB, &m_sluX,
&recip_pivot_gross, &rcond,
&m_sluFerr[0], &m_sluBerr[0],
&m_sluStat, &info, Scalar());
}
StatFree(&m_sluStat);
// reset to previous state
m_sluOptions.Trans = NOTRANS;
return info==0;
}
//
// the code of this extractData() function has been adapted from the SuperLU's Matlab support code,
//
// Copyright (c) 1994 by Xerox Corporation. All rights reserved.
//
// THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
// EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
//
template<typename MatrixType>
void SparseLU<MatrixType,SuperLU>::extractData() const
{
if (m_extractedDataAreDirty)
{
int upper;
int fsupc, istart, nsupr;
int lastl = 0, lastu = 0;
SCformat *Lstore = static_cast<SCformat*>(m_sluL.Store);
NCformat *Ustore = static_cast<NCformat*>(m_sluU.Store);
Scalar *SNptr;
const int size = m_matrix.rows();
m_l.resize(size,size);
m_l.resizeNonZeros(Lstore->nnz);
m_u.resize(size,size);
m_u.resizeNonZeros(Ustore->nnz);
int* Lcol = m_l._outerIndexPtr();
int* Lrow = m_l._innerIndexPtr();
Scalar* Lval = m_l._valuePtr();
int* Ucol = m_u._outerIndexPtr();
int* Urow = m_u._innerIndexPtr();
Scalar* Uval = m_u._valuePtr();
Ucol[0] = 0;
Ucol[0] = 0;
/* for each supernode */
for (int k = 0; k <= Lstore->nsuper; ++k)
{
fsupc = L_FST_SUPC(k);
istart = L_SUB_START(fsupc);
nsupr = L_SUB_START(fsupc+1) - istart;
upper = 1;
/* for each column in the supernode */
for (int j = fsupc; j < L_FST_SUPC(k+1); ++j)
{
SNptr = &((Scalar*)Lstore->nzval)[L_NZ_START(j)];
/* Extract U */
for (int i = U_NZ_START(j); i < U_NZ_START(j+1); ++i)
{
Uval[lastu] = ((Scalar*)Ustore->nzval)[i];
/* Matlab doesn't like explicit zero. */
if (Uval[lastu] != 0.0)
Urow[lastu++] = U_SUB(i);
}
for (int i = 0; i < upper; ++i)
{
/* upper triangle in the supernode */
Uval[lastu] = SNptr[i];
/* Matlab doesn't like explicit zero. */
if (Uval[lastu] != 0.0)
Urow[lastu++] = L_SUB(istart+i);
}
Ucol[j+1] = lastu;
/* Extract L */
Lval[lastl] = 1.0; /* unit diagonal */
Lrow[lastl++] = L_SUB(istart + upper - 1);
for (int i = upper; i < nsupr; ++i)
{
Lval[lastl] = SNptr[i];
/* Matlab doesn't like explicit zero. */
if (Lval[lastl] != 0.0)
Lrow[lastl++] = L_SUB(istart+i);
}
Lcol[j+1] = lastl;
++upper;
} /* for j ... */
} /* for k ... */
// squeeze the matrices :
m_l.resizeNonZeros(lastl);
m_u.resizeNonZeros(lastu);
m_extractedDataAreDirty = false;
}
}
template<typename MatrixType>
typename SparseLU<MatrixType,SuperLU>::Scalar SparseLU<MatrixType,SuperLU>::determinant() const
{
assert((!NumTraits<Scalar>::IsComplex) && "This function is not implemented for complex yet");
if (m_extractedDataAreDirty)
extractData();
// TODO this code could be moved to the default/base backend
// FIXME perhaps we have to take into account the scale factors m_sluRscale and m_sluCscale ???
Scalar det = Scalar(1);
for (int j=0; j<m_u.cols(); ++j)
{
if (m_u._outerIndexPtr()[j+1]-m_u._outerIndexPtr()[j] > 0)
{
int lastId = m_u._outerIndexPtr()[j+1]-1;
eigen_assert(m_u._innerIndexPtr()[lastId]<=j);
if (m_u._innerIndexPtr()[lastId]==j)
{
det *= m_u._valuePtr()[lastId];
}
}
// std::cout << m_sluRscale[j] << " " << m_sluCscale[j] << " \n";
}
return det;
}
#endif // EIGEN_SUPERLUSUPPORT_H