mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-05-11 23:39:03 +08:00
461 lines
17 KiB
C++
461 lines
17 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#ifndef EIGEN_XPRHELPER_H
|
|
#define EIGEN_XPRHELPER_H
|
|
|
|
// just a workaround because GCC seems to not really like empty structs
|
|
// FIXME: gcc 4.3 generates bad code when strict-aliasing is enabled
|
|
// so currently we simply disable this optimization for gcc 4.3
|
|
#if (defined __GNUG__) && !((__GNUC__==4) && (__GNUC_MINOR__==3))
|
|
#define EIGEN_EMPTY_STRUCT_CTOR(X) \
|
|
EIGEN_STRONG_INLINE X() {} \
|
|
EIGEN_STRONG_INLINE X(const X& ) {}
|
|
#else
|
|
#define EIGEN_EMPTY_STRUCT_CTOR(X)
|
|
#endif
|
|
|
|
typedef EIGEN_DEFAULT_DENSE_INDEX_TYPE DenseIndex;
|
|
|
|
namespace internal {
|
|
|
|
//classes inheriting no_assignment_operator don't generate a default operator=.
|
|
class no_assignment_operator
|
|
{
|
|
private:
|
|
no_assignment_operator& operator=(const no_assignment_operator&);
|
|
};
|
|
|
|
/** \internal return the index type with the largest number of bits */
|
|
template<typename I1, typename I2>
|
|
struct promote_index_type
|
|
{
|
|
typedef typename conditional<(sizeof(I1)<sizeof(I2)), I2, I1>::type type;
|
|
};
|
|
|
|
/** \internal If the template parameter Value is Dynamic, this class is just a wrapper around a T variable that
|
|
* can be accessed using value() and setValue().
|
|
* Otherwise, this class is an empty structure and value() just returns the template parameter Value.
|
|
*/
|
|
template<typename T, int Value> class variable_if_dynamic
|
|
{
|
|
public:
|
|
EIGEN_EMPTY_STRUCT_CTOR(variable_if_dynamic)
|
|
explicit variable_if_dynamic(T v) { EIGEN_ONLY_USED_FOR_DEBUG(v); assert(v == T(Value)); }
|
|
static T value() { return T(Value); }
|
|
void setValue(T) {}
|
|
};
|
|
|
|
template<typename T> class variable_if_dynamic<T, Dynamic>
|
|
{
|
|
T m_value;
|
|
variable_if_dynamic() { assert(false); }
|
|
public:
|
|
explicit variable_if_dynamic(T value) : m_value(value) {}
|
|
T value() const { return m_value; }
|
|
void setValue(T value) { m_value = value; }
|
|
};
|
|
|
|
template<typename T> struct functor_traits
|
|
{
|
|
enum
|
|
{
|
|
Cost = 10,
|
|
PacketAccess = false
|
|
};
|
|
};
|
|
|
|
template<typename T> struct packet_traits;
|
|
|
|
template<typename T> struct unpacket_traits
|
|
{
|
|
typedef T type;
|
|
enum {size=1};
|
|
};
|
|
|
|
template<typename _Scalar, int _Rows, int _Cols,
|
|
int _Options = AutoAlign |
|
|
( (_Rows==1 && _Cols!=1) ? RowMajor
|
|
: (_Cols==1 && _Rows!=1) ? ColMajor
|
|
: EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION ),
|
|
int _MaxRows = _Rows,
|
|
int _MaxCols = _Cols
|
|
> class make_proper_matrix_type
|
|
{
|
|
enum {
|
|
IsColVector = _Cols==1 && _Rows!=1,
|
|
IsRowVector = _Rows==1 && _Cols!=1,
|
|
Options = IsColVector ? (_Options | ColMajor) & ~RowMajor
|
|
: IsRowVector ? (_Options | RowMajor) & ~ColMajor
|
|
: _Options
|
|
};
|
|
public:
|
|
typedef Matrix<_Scalar, _Rows, _Cols, Options, _MaxRows, _MaxCols> type;
|
|
};
|
|
|
|
template<typename Scalar, int Rows, int Cols, int Options, int MaxRows, int MaxCols>
|
|
class compute_matrix_flags
|
|
{
|
|
enum {
|
|
row_major_bit = Options&RowMajor ? RowMajorBit : 0,
|
|
is_dynamic_size_storage = MaxRows==Dynamic || MaxCols==Dynamic,
|
|
|
|
aligned_bit =
|
|
(
|
|
((Options&DontAlign)==0)
|
|
&& packet_traits<Scalar>::Vectorizable
|
|
&& (
|
|
#if EIGEN_ALIGN_STATICALLY
|
|
((!is_dynamic_size_storage) && (((MaxCols*MaxRows) % packet_traits<Scalar>::size) == 0))
|
|
#else
|
|
0
|
|
#endif
|
|
|
|
||
|
|
|
|
#if EIGEN_ALIGN
|
|
is_dynamic_size_storage
|
|
#else
|
|
0
|
|
#endif
|
|
|
|
)
|
|
) ? AlignedBit : 0,
|
|
packet_access_bit = packet_traits<Scalar>::Vectorizable && aligned_bit ? PacketAccessBit : 0
|
|
};
|
|
|
|
public:
|
|
enum { ret = LinearAccessBit | LvalueBit | DirectAccessBit | NestByRefBit | packet_access_bit | row_major_bit | aligned_bit };
|
|
};
|
|
|
|
template<int _Rows, int _Cols> struct size_at_compile_time
|
|
{
|
|
enum { ret = (_Rows==Dynamic || _Cols==Dynamic) ? Dynamic : _Rows * _Cols };
|
|
};
|
|
|
|
/* plain_matrix_type : the difference from eval is that plain_matrix_type is always a plain matrix type,
|
|
* whereas eval is a const reference in the case of a matrix
|
|
*/
|
|
|
|
template<typename T, typename StorageKind = typename traits<T>::StorageKind> struct plain_matrix_type;
|
|
template<typename T, typename BaseClassType> struct plain_matrix_type_dense;
|
|
template<typename T> struct plain_matrix_type<T,Dense>
|
|
{
|
|
typedef typename plain_matrix_type_dense<T,typename traits<T>::XprKind>::type type;
|
|
};
|
|
|
|
template<typename T> struct plain_matrix_type_dense<T,MatrixXpr>
|
|
{
|
|
typedef Matrix<typename traits<T>::Scalar,
|
|
traits<T>::RowsAtCompileTime,
|
|
traits<T>::ColsAtCompileTime,
|
|
AutoAlign | (traits<T>::Flags&RowMajorBit ? RowMajor : ColMajor),
|
|
traits<T>::MaxRowsAtCompileTime,
|
|
traits<T>::MaxColsAtCompileTime
|
|
> type;
|
|
};
|
|
|
|
template<typename T> struct plain_matrix_type_dense<T,ArrayXpr>
|
|
{
|
|
typedef Array<typename traits<T>::Scalar,
|
|
traits<T>::RowsAtCompileTime,
|
|
traits<T>::ColsAtCompileTime,
|
|
AutoAlign | (traits<T>::Flags&RowMajorBit ? RowMajor : ColMajor),
|
|
traits<T>::MaxRowsAtCompileTime,
|
|
traits<T>::MaxColsAtCompileTime
|
|
> type;
|
|
};
|
|
|
|
/* eval : the return type of eval(). For matrices, this is just a const reference
|
|
* in order to avoid a useless copy
|
|
*/
|
|
|
|
template<typename T, typename StorageKind = typename traits<T>::StorageKind> struct eval;
|
|
|
|
template<typename T> struct eval<T,Dense>
|
|
{
|
|
typedef typename plain_matrix_type<T>::type type;
|
|
// typedef typename T::PlainObject type;
|
|
// typedef T::Matrix<typename traits<T>::Scalar,
|
|
// traits<T>::RowsAtCompileTime,
|
|
// traits<T>::ColsAtCompileTime,
|
|
// AutoAlign | (traits<T>::Flags&RowMajorBit ? RowMajor : ColMajor),
|
|
// traits<T>::MaxRowsAtCompileTime,
|
|
// traits<T>::MaxColsAtCompileTime
|
|
// > type;
|
|
};
|
|
|
|
// for matrices, no need to evaluate, just use a const reference to avoid a useless copy
|
|
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
|
|
struct eval<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>, Dense>
|
|
{
|
|
typedef const Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& type;
|
|
};
|
|
|
|
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
|
|
struct eval<Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>, Dense>
|
|
{
|
|
typedef const Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& type;
|
|
};
|
|
|
|
|
|
|
|
/* plain_matrix_type_column_major : same as plain_matrix_type but guaranteed to be column-major
|
|
*/
|
|
template<typename T> struct plain_matrix_type_column_major
|
|
{
|
|
enum { Rows = traits<T>::RowsAtCompileTime,
|
|
Cols = traits<T>::ColsAtCompileTime,
|
|
MaxRows = traits<T>::MaxRowsAtCompileTime,
|
|
MaxCols = traits<T>::MaxColsAtCompileTime
|
|
};
|
|
typedef Matrix<typename traits<T>::Scalar,
|
|
Rows,
|
|
Cols,
|
|
(MaxRows==1&&MaxCols!=1) ? RowMajor : ColMajor,
|
|
MaxRows,
|
|
MaxCols
|
|
> type;
|
|
};
|
|
|
|
/* plain_matrix_type_row_major : same as plain_matrix_type but guaranteed to be row-major
|
|
*/
|
|
template<typename T> struct plain_matrix_type_row_major
|
|
{
|
|
enum { Rows = traits<T>::RowsAtCompileTime,
|
|
Cols = traits<T>::ColsAtCompileTime,
|
|
MaxRows = traits<T>::MaxRowsAtCompileTime,
|
|
MaxCols = traits<T>::MaxColsAtCompileTime
|
|
};
|
|
typedef Matrix<typename traits<T>::Scalar,
|
|
Rows,
|
|
Cols,
|
|
(MaxCols==1&&MaxRows!=1) ? RowMajor : ColMajor,
|
|
MaxRows,
|
|
MaxCols
|
|
> type;
|
|
};
|
|
|
|
// we should be able to get rid of this one too
|
|
template<typename T> struct must_nest_by_value { enum { ret = false }; };
|
|
|
|
template<class T>
|
|
struct is_reference
|
|
{
|
|
enum { ret = false };
|
|
};
|
|
|
|
template<class T>
|
|
struct is_reference<T&>
|
|
{
|
|
enum { ret = true };
|
|
};
|
|
|
|
/**
|
|
* \internal The reference selector for template expressions. The idea is that we don't
|
|
* need to use references for expressions since they are light weight proxy
|
|
* objects which should generate no copying overhead.
|
|
**/
|
|
template <typename T>
|
|
struct ref_selector
|
|
{
|
|
typedef typename conditional<
|
|
bool(traits<T>::Flags & NestByRefBit),
|
|
T const&,
|
|
T
|
|
>::type type;
|
|
};
|
|
|
|
/** \internal Determines how a given expression should be nested into another one.
|
|
* For example, when you do a * (b+c), Eigen will determine how the expression b+c should be
|
|
* nested into the bigger product expression. The choice is between nesting the expression b+c as-is, or
|
|
* evaluating that expression b+c into a temporary variable d, and nest d so that the resulting expression is
|
|
* a*d. Evaluating can be beneficial for example if every coefficient access in the resulting expression causes
|
|
* many coefficient accesses in the nested expressions -- as is the case with matrix product for example.
|
|
*
|
|
* \param T the type of the expression being nested
|
|
* \param n the number of coefficient accesses in the nested expression for each coefficient access in the bigger expression.
|
|
*
|
|
* Example. Suppose that a, b, and c are of type Matrix3d. The user forms the expression a*(b+c).
|
|
* b+c is an expression "sum of matrices", which we will denote by S. In order to determine how to nest it,
|
|
* the Product expression uses: nested<S, 3>::ret, which turns out to be Matrix3d because the internal logic of
|
|
* nested determined that in this case it was better to evaluate the expression b+c into a temporary. On the other hand,
|
|
* since a is of type Matrix3d, the Product expression nests it as nested<Matrix3d, 3>::ret, which turns out to be
|
|
* const Matrix3d&, because the internal logic of nested determined that since a was already a matrix, there was no point
|
|
* in copying it into another matrix.
|
|
*/
|
|
template<typename T, int n=1, typename PlainObject = typename eval<T>::type> struct nested
|
|
{
|
|
enum {
|
|
// for the purpose of this test, to keep it reasonably simple, we arbitrarily choose a value of Dynamic values.
|
|
// the choice of 10000 makes it larger than any practical fixed value and even most dynamic values.
|
|
// in extreme cases where these assumptions would be wrong, we would still at worst suffer performance issues
|
|
// (poor choice of temporaries).
|
|
// it's important that this value can still be squared without integer overflowing.
|
|
DynamicAsInteger = 10000,
|
|
ScalarReadCost = NumTraits<typename traits<T>::Scalar>::ReadCost,
|
|
ScalarReadCostAsInteger = ScalarReadCost == Dynamic ? DynamicAsInteger : ScalarReadCost,
|
|
CoeffReadCost = traits<T>::CoeffReadCost,
|
|
CoeffReadCostAsInteger = CoeffReadCost == Dynamic ? DynamicAsInteger : CoeffReadCost,
|
|
NAsInteger = n == Dynamic ? int(DynamicAsInteger) : n,
|
|
CostEvalAsInteger = (NAsInteger+1) * ScalarReadCostAsInteger + CoeffReadCostAsInteger,
|
|
CostNoEvalAsInteger = NAsInteger * CoeffReadCostAsInteger
|
|
};
|
|
|
|
typedef typename conditional<
|
|
( (int(traits<T>::Flags) & EvalBeforeNestingBit) ||
|
|
int(CostEvalAsInteger) < int(CostNoEvalAsInteger)
|
|
),
|
|
PlainObject,
|
|
typename ref_selector<T>::type
|
|
>::type type;
|
|
};
|
|
|
|
template<typename T>
|
|
T* const_cast_ptr(const T* ptr)
|
|
{
|
|
return const_cast<T*>(ptr);
|
|
}
|
|
|
|
template<typename Derived, typename XprKind = typename traits<Derived>::XprKind>
|
|
struct dense_xpr_base
|
|
{
|
|
/* dense_xpr_base should only ever be used on dense expressions, thus falling either into the MatrixXpr or into the ArrayXpr cases */
|
|
};
|
|
|
|
template<typename Derived>
|
|
struct dense_xpr_base<Derived, MatrixXpr>
|
|
{
|
|
typedef MatrixBase<Derived> type;
|
|
};
|
|
|
|
template<typename Derived>
|
|
struct dense_xpr_base<Derived, ArrayXpr>
|
|
{
|
|
typedef ArrayBase<Derived> type;
|
|
};
|
|
|
|
/** \internal Helper base class to add a scalar multiple operator
|
|
* overloads for complex types */
|
|
template<typename Derived,typename Scalar,typename OtherScalar,
|
|
bool EnableIt = !is_same<Scalar,OtherScalar>::value >
|
|
struct special_scalar_op_base : public DenseCoeffsBase<Derived>
|
|
{
|
|
// dummy operator* so that the
|
|
// "using special_scalar_op_base::operator*" compiles
|
|
void operator*() const;
|
|
};
|
|
|
|
template<typename Derived,typename Scalar,typename OtherScalar>
|
|
struct special_scalar_op_base<Derived,Scalar,OtherScalar,true> : public DenseCoeffsBase<Derived>
|
|
{
|
|
const CwiseUnaryOp<scalar_multiple2_op<Scalar,OtherScalar>, Derived>
|
|
operator*(const OtherScalar& scalar) const
|
|
{
|
|
return CwiseUnaryOp<scalar_multiple2_op<Scalar,OtherScalar>, Derived>
|
|
(*static_cast<const Derived*>(this), scalar_multiple2_op<Scalar,OtherScalar>(scalar));
|
|
}
|
|
|
|
inline friend const CwiseUnaryOp<scalar_multiple2_op<Scalar,OtherScalar>, Derived>
|
|
operator*(const OtherScalar& scalar, const Derived& matrix)
|
|
{ return static_cast<const special_scalar_op_base&>(matrix).operator*(scalar); }
|
|
};
|
|
|
|
template<typename XprType, typename CastType> struct cast_return_type
|
|
{
|
|
typedef typename XprType::Scalar CurrentScalarType;
|
|
typedef typename remove_all<CastType>::type _CastType;
|
|
typedef typename _CastType::Scalar NewScalarType;
|
|
typedef typename conditional<is_same<CurrentScalarType,NewScalarType>::value,
|
|
const XprType&,CastType>::type type;
|
|
};
|
|
|
|
template <typename A, typename B> struct promote_storage_type;
|
|
|
|
template <typename A> struct promote_storage_type<A,A>
|
|
{
|
|
typedef A ret;
|
|
};
|
|
|
|
/** \internal gives the plain matrix or array type to store a row/column/diagonal of a matrix type.
|
|
* \param Scalar optional parameter allowing to pass a different scalar type than the one of the MatrixType.
|
|
*/
|
|
template<typename ExpressionType, typename Scalar = typename ExpressionType::Scalar>
|
|
struct plain_row_type
|
|
{
|
|
typedef Matrix<Scalar, 1, ExpressionType::ColsAtCompileTime,
|
|
ExpressionType::PlainObject::Options | RowMajor, 1, ExpressionType::MaxColsAtCompileTime> MatrixRowType;
|
|
typedef Array<Scalar, 1, ExpressionType::ColsAtCompileTime,
|
|
ExpressionType::PlainObject::Options | RowMajor, 1, ExpressionType::MaxColsAtCompileTime> ArrayRowType;
|
|
|
|
typedef typename conditional<
|
|
is_same< typename traits<ExpressionType>::XprKind, MatrixXpr >::value,
|
|
MatrixRowType,
|
|
ArrayRowType
|
|
>::type type;
|
|
};
|
|
|
|
template<typename ExpressionType, typename Scalar = typename ExpressionType::Scalar>
|
|
struct plain_col_type
|
|
{
|
|
typedef Matrix<Scalar, ExpressionType::RowsAtCompileTime, 1,
|
|
ExpressionType::PlainObject::Options & ~RowMajor, ExpressionType::MaxRowsAtCompileTime, 1> MatrixColType;
|
|
typedef Array<Scalar, ExpressionType::RowsAtCompileTime, 1,
|
|
ExpressionType::PlainObject::Options & ~RowMajor, ExpressionType::MaxRowsAtCompileTime, 1> ArrayColType;
|
|
|
|
typedef typename conditional<
|
|
is_same< typename traits<ExpressionType>::XprKind, MatrixXpr >::value,
|
|
MatrixColType,
|
|
ArrayColType
|
|
>::type type;
|
|
};
|
|
|
|
template<typename ExpressionType, typename Scalar = typename ExpressionType::Scalar>
|
|
struct plain_diag_type
|
|
{
|
|
enum { diag_size = EIGEN_SIZE_MIN_PREFER_DYNAMIC(ExpressionType::RowsAtCompileTime, ExpressionType::ColsAtCompileTime),
|
|
max_diag_size = EIGEN_SIZE_MIN_PREFER_FIXED(ExpressionType::MaxRowsAtCompileTime, ExpressionType::MaxColsAtCompileTime)
|
|
};
|
|
typedef Matrix<Scalar, diag_size, 1, ExpressionType::PlainObject::Options & ~RowMajor, max_diag_size, 1> MatrixDiagType;
|
|
typedef Array<Scalar, diag_size, 1, ExpressionType::PlainObject::Options & ~RowMajor, max_diag_size, 1> ArrayDiagType;
|
|
|
|
typedef typename conditional<
|
|
is_same< typename traits<ExpressionType>::XprKind, MatrixXpr >::value,
|
|
MatrixDiagType,
|
|
ArrayDiagType
|
|
>::type type;
|
|
};
|
|
|
|
template<typename ExpressionType>
|
|
struct is_lvalue
|
|
{
|
|
enum { value = !bool(is_const<ExpressionType>::value) &&
|
|
bool(traits<ExpressionType>::Flags & LvalueBit) };
|
|
};
|
|
|
|
} // end namespace internal
|
|
|
|
#endif // EIGEN_XPRHELPER_H
|