mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-05-13 00:08:08 +08:00
187 lines
6.8 KiB
C++
187 lines
6.8 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#ifndef EIGEN_STABLENORM_H
|
|
#define EIGEN_STABLENORM_H
|
|
|
|
namespace internal {
|
|
template<typename ExpressionType, typename Scalar>
|
|
inline void stable_norm_kernel(const ExpressionType& bl, Scalar& ssq, Scalar& scale, Scalar& invScale)
|
|
{
|
|
Scalar max = bl.cwiseAbs().maxCoeff();
|
|
if (max>scale)
|
|
{
|
|
ssq = ssq * abs2(scale/max);
|
|
scale = max;
|
|
invScale = Scalar(1)/scale;
|
|
}
|
|
// TODO if the max is much much smaller than the current scale,
|
|
// then we can neglect this sub vector
|
|
ssq += (bl*invScale).squaredNorm();
|
|
}
|
|
}
|
|
|
|
/** \returns the \em l2 norm of \c *this avoiding underflow and overflow.
|
|
* This version use a blockwise two passes algorithm:
|
|
* 1 - find the absolute largest coefficient \c s
|
|
* 2 - compute \f$ s \Vert \frac{*this}{s} \Vert \f$ in a standard way
|
|
*
|
|
* For architecture/scalar types supporting vectorization, this version
|
|
* is faster than blueNorm(). Otherwise the blueNorm() is much faster.
|
|
*
|
|
* \sa norm(), blueNorm(), hypotNorm()
|
|
*/
|
|
template<typename Derived>
|
|
inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real
|
|
MatrixBase<Derived>::stableNorm() const
|
|
{
|
|
const Index blockSize = 4096;
|
|
RealScalar scale = 0;
|
|
RealScalar invScale = 1;
|
|
RealScalar ssq = 0; // sum of square
|
|
enum {
|
|
Alignment = (int(Flags)&DirectAccessBit) || (int(Flags)&AlignedBit) ? 1 : 0
|
|
};
|
|
Index n = size();
|
|
Index bi = internal::first_aligned(derived());
|
|
if (bi>0)
|
|
internal::stable_norm_kernel(this->head(bi), ssq, scale, invScale);
|
|
for (; bi<n; bi+=blockSize)
|
|
internal::stable_norm_kernel(this->segment(bi,std::min(blockSize, n - bi)).template forceAlignedAccessIf<Alignment>(), ssq, scale, invScale);
|
|
return scale * internal::sqrt(ssq);
|
|
}
|
|
|
|
/** \returns the \em l2 norm of \c *this using the Blue's algorithm.
|
|
* A Portable Fortran Program to Find the Euclidean Norm of a Vector,
|
|
* ACM TOMS, Vol 4, Issue 1, 1978.
|
|
*
|
|
* For architecture/scalar types without vectorization, this version
|
|
* is much faster than stableNorm(). Otherwise the stableNorm() is faster.
|
|
*
|
|
* \sa norm(), stableNorm(), hypotNorm()
|
|
*/
|
|
template<typename Derived>
|
|
inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real
|
|
MatrixBase<Derived>::blueNorm() const
|
|
{
|
|
static Index nmax = -1;
|
|
static RealScalar b1, b2, s1m, s2m, overfl, rbig, relerr;
|
|
if(nmax <= 0)
|
|
{
|
|
int nbig, ibeta, it, iemin, iemax, iexp;
|
|
RealScalar abig, eps;
|
|
// This program calculates the machine-dependent constants
|
|
// bl, b2, slm, s2m, relerr overfl, nmax
|
|
// from the "basic" machine-dependent numbers
|
|
// nbig, ibeta, it, iemin, iemax, rbig.
|
|
// The following define the basic machine-dependent constants.
|
|
// For portability, the PORT subprograms "ilmaeh" and "rlmach"
|
|
// are used. For any specific computer, each of the assignment
|
|
// statements can be replaced
|
|
nbig = std::numeric_limits<Index>::max(); // largest integer
|
|
ibeta = std::numeric_limits<RealScalar>::radix; // base for floating-point numbers
|
|
it = std::numeric_limits<RealScalar>::digits; // number of base-beta digits in mantissa
|
|
iemin = std::numeric_limits<RealScalar>::min_exponent; // minimum exponent
|
|
iemax = std::numeric_limits<RealScalar>::max_exponent; // maximum exponent
|
|
rbig = std::numeric_limits<RealScalar>::max(); // largest floating-point number
|
|
|
|
iexp = -((1-iemin)/2);
|
|
b1 = RealScalar(std::pow(RealScalar(ibeta),RealScalar(iexp))); // lower boundary of midrange
|
|
iexp = (iemax + 1 - it)/2;
|
|
b2 = RealScalar(std::pow(RealScalar(ibeta),RealScalar(iexp))); // upper boundary of midrange
|
|
|
|
iexp = (2-iemin)/2;
|
|
s1m = RealScalar(std::pow(RealScalar(ibeta),RealScalar(iexp))); // scaling factor for lower range
|
|
iexp = - ((iemax+it)/2);
|
|
s2m = RealScalar(std::pow(RealScalar(ibeta),RealScalar(iexp))); // scaling factor for upper range
|
|
|
|
overfl = rbig*s2m; // overflow boundary for abig
|
|
eps = RealScalar(std::pow(double(ibeta), 1-it));
|
|
relerr = internal::sqrt(eps); // tolerance for neglecting asml
|
|
abig = RealScalar(1.0/eps - 1.0);
|
|
if (RealScalar(nbig)>abig) nmax = int(abig); // largest safe n
|
|
else nmax = nbig;
|
|
}
|
|
Index n = size();
|
|
RealScalar ab2 = b2 / RealScalar(n);
|
|
RealScalar asml = RealScalar(0);
|
|
RealScalar amed = RealScalar(0);
|
|
RealScalar abig = RealScalar(0);
|
|
for(Index j=0; j<n; ++j)
|
|
{
|
|
RealScalar ax = internal::abs(coeff(j));
|
|
if(ax > ab2) abig += internal::abs2(ax*s2m);
|
|
else if(ax < b1) asml += internal::abs2(ax*s1m);
|
|
else amed += internal::abs2(ax);
|
|
}
|
|
if(abig > RealScalar(0))
|
|
{
|
|
abig = internal::sqrt(abig);
|
|
if(abig > overfl)
|
|
{
|
|
eigen_assert(false && "overflow");
|
|
return rbig;
|
|
}
|
|
if(amed > RealScalar(0))
|
|
{
|
|
abig = abig/s2m;
|
|
amed = internal::sqrt(amed);
|
|
}
|
|
else
|
|
return abig/s2m;
|
|
}
|
|
else if(asml > RealScalar(0))
|
|
{
|
|
if (amed > RealScalar(0))
|
|
{
|
|
abig = internal::sqrt(amed);
|
|
amed = internal::sqrt(asml) / s1m;
|
|
}
|
|
else
|
|
return internal::sqrt(asml)/s1m;
|
|
}
|
|
else
|
|
return internal::sqrt(amed);
|
|
asml = std::min(abig, amed);
|
|
abig = std::max(abig, amed);
|
|
if(asml <= abig*relerr)
|
|
return abig;
|
|
else
|
|
return abig * internal::sqrt(RealScalar(1) + internal::abs2(asml/abig));
|
|
}
|
|
|
|
/** \returns the \em l2 norm of \c *this avoiding undeflow and overflow.
|
|
* This version use a concatenation of hypot() calls, and it is very slow.
|
|
*
|
|
* \sa norm(), stableNorm()
|
|
*/
|
|
template<typename Derived>
|
|
inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real
|
|
MatrixBase<Derived>::hypotNorm() const
|
|
{
|
|
return this->cwiseAbs().redux(internal::scalar_hypot_op<RealScalar>());
|
|
}
|
|
|
|
#endif // EIGEN_STABLENORM_H
|