eigen/Eigen/src/Core/MatrixBase.h
Benoit Jacob c67e717404 alpha 3.1. in this commit:
- finally get the Eval stuff right. get back to having Eval as
  a subclass of Matrix with limited functionality, and then,
  add a typedef MatrixType to get the actual matrix type.
- add swap(), findBiggestCoeff()
- bugfix by Ramon in Transpose
- new demo: doc/echelon.cpp
2008-01-15 13:55:47 +00:00

338 lines
14 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2006-2008 Benoit Jacob <jacob@math.jussieu.fr>
//
// Eigen is free software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the Free Software
// Foundation; either version 2 or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
// details.
//
// You should have received a copy of the GNU General Public License along
// with Eigen; if not, write to the Free Software Foundation, Inc., 51
// Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
//
// As a special exception, if other files instantiate templates or use macros
// or functions from this file, or you compile this file and link it
// with other works to produce a work based on this file, this file does not
// by itself cause the resulting work to be covered by the GNU General Public
// License. This exception does not invalidate any other reasons why a work
// based on this file might be covered by the GNU General Public License.
#ifndef EIGEN_MATRIXBASE_H
#define EIGEN_MATRIXBASE_H
/** \class MatrixBase
*
* \brief Base class for all matrices, vectors, and expressions
*
* This class is the base that is inherited by all matrix, vector, and expression
* types. Most of the Eigen API is contained in this class.
*
* \param Scalar is the type of the coefficients. Recall that Eigen allows
* only the following types for \a Scalar: \c int, \c float, \c double,
* \c std::complex<float>, \c std::complex<double>.
* \param Derived is the derived type, e.g. a matrix type, or an expression, etc.
*
* When writing a function taking Eigen objects as argument, if you want your function
* to take as argument any matrix, vector, or expression, just let it take a
* MatrixBase argument. As an example, here is a function printFirstRow which, given
* a matrix, vector, or expression \a x, prints the first row of \a x.
*
* \code
template<typename Scalar, typename Derived>
void printFirstRow(const Eigen::MatrixBase<Scalar, Derived>& x)
{
cout << x.row(0) << endl;
}
* \endcode
*/
template<typename Scalar, typename Derived> class MatrixBase
{
public:
/** \brief Some traits provided by the Derived type.
*
* Grouping these in a nested subclass is what was needed for ICC compatibility. */
struct Traits
{
/** The number of rows at compile-time. This is just a copy of the value provided
* by the \a Derived type. If a value is not known at compile-time,
* it is set to the \a Dynamic constant.
* \sa MatrixBase::rows(), MatrixBase::cols(), ColsAtCompileTime, SizeAtCompileTime */
enum { RowsAtCompileTime = Derived::RowsAtCompileTime };
/** The number of columns at compile-time. This is just a copy of the value provided
* by the \a Derived type. If a value is not known at compile-time,
* it is set to the \a Dynamic constant.
* \sa MatrixBase::rows(), MatrixBase::cols(), RowsAtCompileTime, SizeAtCompileTime */
enum { ColsAtCompileTime = Derived::ColsAtCompileTime };
/** This is equal to the number of coefficients, i.e. the number of
* rows times the number of columns, or to \a Dynamic if this is not
* known at compile-time. \sa RowsAtCompileTime, ColsAtCompileTime */
enum { SizeAtCompileTime
= Derived::RowsAtCompileTime == Dynamic || Derived::ColsAtCompileTime == Dynamic
? Dynamic : Derived::RowsAtCompileTime * Derived::ColsAtCompileTime
};
/** This value is equal to the maximum possible number of rows that this expression
* might have. If this expression might have an arbitrarily high number of rows,
* this value is set to \a Dynamic.
*
* This value is useful to know when evaluating an expression, in order to determine
* whether it is possible to avoid doing a dynamic memory allocation.
*
* \sa RowsAtCompileTime, MaxColsAtCompileTime, MaxSizeAtCompileTime
*/
enum { MaxRowsAtCompileTime = Derived::MaxRowsAtCompileTime };
/** This value is equal to the maximum possible number of columns that this expression
* might have. If this expression might have an arbitrarily high number of columns,
* this value is set to \a Dynamic.
*
* This value is useful to know when evaluating an expression, in order to determine
* whether it is possible to avoid doing a dynamic memory allocation.
*
* \sa ColsAtCompileTime, MaxRowsAtCompileTime, MaxSizeAtCompileTime
*/
enum { MaxColsAtCompileTime = Derived::MaxColsAtCompileTime };
/** This value is equal to the maximum possible number of coefficients that this expression
* might have. If this expression might have an arbitrarily high number of coefficients,
* this value is set to \a Dynamic.
*
* This value is useful to know when evaluating an expression, in order to determine
* whether it is possible to avoid doing a dynamic memory allocation.
*
* \sa SizeAtCompileTime, MaxRowsAtCompileTime, MaxColsAtCompileTime
*/
enum { MaxSizeAtCompileTime
= Derived::MaxRowsAtCompileTime == Dynamic || Derived::MaxColsAtCompileTime == Dynamic
? Dynamic : Derived::MaxRowsAtCompileTime * Derived::MaxColsAtCompileTime
};
/** This is set to true if either the number of rows or the number of
* columns is known at compile-time to be equal to 1. Indeed, in that case,
* we are dealing with a column-vector (if there is only one column) or with
* a row-vector (if there is only one row). */
enum { IsVectorAtCompileTime
= Derived::RowsAtCompileTime == 1 || Derived::ColsAtCompileTime == 1
};
};
/** This is the "reference type" used to pass objects of type MatrixBase as arguments
* to functions. If this MatrixBase type represents an expression, then \a Ref
* is just this MatrixBase type itself, i.e. expressions are just passed by value
* and the compiler is usually clever enough to optimize that. If, on the
* other hand, this MatrixBase type is an actual matrix or vector type, then \a Ref is
* a typedef to MatrixRef, which works as a reference, so that matrices and vectors
* are passed by reference, not by value. \sa ref()*/
typedef typename Reference<Derived>::Type Ref;
/** This is the "real scalar" type; if the \a Scalar type is already real numbers
* (e.g. int, float or double) then \a RealScalar is just the same as \a Scalar. If
* \a Scalar is \a std::complex<T> then RealScalar is \a T.
*
* In fact, \a RealScalar is defined as follows:
* \code typedef typename NumTraits<Scalar>::Real RealScalar; \endcode
*
* \sa class NumTraits
*/
typedef typename NumTraits<Scalar>::Real RealScalar;
/** \returns the number of rows. \sa cols(), Traits::RowsAtCompileTime */
int rows() const { return static_cast<const Derived *>(this)->_rows(); }
/** \returns the number of columns. \sa row(), Traits::ColsAtCompileTime*/
int cols() const { return static_cast<const Derived *>(this)->_cols(); }
/** \returns the number of coefficients, which is \a rows()*cols().
* \sa rows(), cols(), Traits::SizeAtCompileTime. */
int size() const { return rows() * cols(); }
/** \returns true if either the number of rows or the number of columns is equal to 1.
* In other words, this function returns
* \code rows()==1 || cols()==1 \endcode
* \sa rows(), cols(), Traits::IsVectorAtCompileTime. */
bool isVector() const { return rows()==1 || cols()==1; }
/** \returns a Ref to *this. \sa Ref */
Ref ref() const
{ return static_cast<const Derived *>(this)->_ref(); }
/** Copies \a other into *this. \returns a reference to *this. */
template<typename OtherDerived>
Derived& operator=(const MatrixBase<Scalar, OtherDerived>& other);
/** Special case of the template operator=, in order to prevent the compiler
* from generating a default operator= (issue hit with g++ 4.1)
*/
Derived& operator=(const MatrixBase& other)
{
return this->operator=<Derived>(other);
}
template<typename NewScalar> const Cast<NewScalar, Derived> cast() const;
Row<Derived> row(int i);
const Row<Derived> row(int i) const;
Column<Derived> col(int i);
const Column<Derived> col(int i) const;
Minor<Derived> minor(int row, int col);
const Minor<Derived> minor(int row, int col) const;
Block<Derived> block(int startRow, int startCol, int blockRows, int blockCols);
const Block<Derived>
block(int startRow, int startCol, int blockRows, int blockCols) const;
Block<Derived> block(int start, int size);
const Block<Derived> block(int start, int size) const;
Block<Derived> start(int size);
const Block<Derived> start(int size) const;
Block<Derived> end(int size);
const Block<Derived> end(int size) const;
Block<Derived> corner(CornerType type, int cRows, int cCols);
const Block<Derived> corner(CornerType type, int cRows, int cCols) const;
template<int BlockRows, int BlockCols>
FixedBlock<Derived, BlockRows, BlockCols> fixedBlock(int startRow, int startCol);
template<int BlockRows, int BlockCols>
const FixedBlock<Derived, BlockRows, BlockCols> fixedBlock(int startRow, int startCol) const;
Transpose<Derived> transpose();
const Transpose<Derived> transpose() const;
const Conjugate<Derived> conjugate() const;
const Transpose<Conjugate<Derived> > adjoint() const;
Scalar trace() const;
template<typename OtherDerived>
Scalar dot(const OtherDerived& other) const;
RealScalar norm2() const;
RealScalar norm() const;
const ScalarMultiple<RealScalar, Derived> normalized() const;
template<typename OtherDerived>
bool isOrtho(const OtherDerived& other, RealScalar prec = precision<Scalar>()) const;
bool isOrtho(RealScalar prec = precision<Scalar>()) const;
static const Eval<Random<Derived> > random(int rows, int cols);
static const Eval<Random<Derived> > random(int size);
static const Eval<Random<Derived> > random();
static const Zero<Derived> zero(int rows, int cols);
static const Zero<Derived> zero(int size);
static const Zero<Derived> zero();
static const Ones<Derived> ones(int rows, int cols);
static const Ones<Derived> ones(int size);
static const Ones<Derived> ones();
static const Identity<Derived> identity();
static const Identity<Derived> identity(int rows, int cols);
bool isZero(RealScalar prec = precision<Scalar>()) const;
bool isOnes(RealScalar prec = precision<Scalar>()) const;
bool isIdentity(RealScalar prec = precision<Scalar>()) const;
bool isDiagonal(RealScalar prec = precision<Scalar>()) const;
Derived& setZero();
Derived& setOnes();
Derived& setRandom();
Derived& setIdentity();
const DiagonalMatrix<Derived> asDiagonal() const;
DiagonalCoeffs<Derived> diagonal();
const DiagonalCoeffs<Derived> diagonal() const;
template<typename OtherDerived>
bool isApprox(const OtherDerived& other,
RealScalar prec = precision<Scalar>()) const;
bool isMuchSmallerThan(const RealScalar& other,
RealScalar prec = precision<Scalar>()) const;
template<typename OtherDerived>
bool isMuchSmallerThan(const MatrixBase<Scalar, OtherDerived>& other,
RealScalar prec = precision<Scalar>()) const;
template<typename OtherDerived>
const Product<Derived, OtherDerived>
lazyProduct(const MatrixBase<Scalar, OtherDerived>& other) const EIGEN_ALWAYS_INLINE;
const Opposite<Derived> operator-() const;
template<typename OtherDerived>
Derived& operator+=(const MatrixBase<Scalar, OtherDerived>& other);
template<typename OtherDerived>
Derived& operator-=(const MatrixBase<Scalar, OtherDerived>& other);
template<typename OtherDerived>
Derived& operator*=(const MatrixBase<Scalar, OtherDerived>& other);
Derived& operator*=(const int& other);
Derived& operator*=(const float& other);
Derived& operator*=(const double& other);
Derived& operator*=(const std::complex<float>& other);
Derived& operator*=(const std::complex<double>& other);
Derived& operator/=(const int& other);
Derived& operator/=(const float& other);
Derived& operator/=(const double& other);
Derived& operator/=(const std::complex<float>& other);
Derived& operator/=(const std::complex<double>& other);
Scalar coeff(int row, int col) const;
Scalar operator()(int row, int col) const;
Scalar& coeffRef(int row, int col);
Scalar& operator()(int row, int col);
Scalar coeff(int index) const;
Scalar operator[](int index) const;
Scalar& coeffRef(int index);
Scalar& operator[](int index);
Scalar x() const;
Scalar y() const;
Scalar z() const;
Scalar w() const;
Scalar& x();
Scalar& y();
Scalar& z();
Scalar& w();
const Eval<Derived> eval() const EIGEN_ALWAYS_INLINE;
/** puts in *row and *col the location of the coefficient of *this
* which has the biggest absolute value.
*/
void findBiggestCoeff(int *row, int *col) const
{
RealScalar biggest = 0;
for(int j = 0; j < cols(); j++)
for(int i = 0; i < rows(); i++)
{
RealScalar x = abs(coeff(i,j));
if(x > biggest)
{
biggest = x;
*row = i;
*col = j;
}
}
}
/** swaps *this with the expression \a other.
*
* \note \a other is only marked const because I couln't find another way
* to get g++ 4.2 to accept that template parameter resolution. It gets const_cast'd
* of course. TODO: get rid of const here.
*/
template<typename OtherDerived>
void swap(const MatrixBase<Scalar, OtherDerived>& other);
};
#endif // EIGEN_MATRIXBASE_H