mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-05-06 02:34:05 +08:00
231 lines
6.9 KiB
C++
231 lines
6.9 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#ifndef EIGEN_COMPRESSED_STORAGE_H
|
|
#define EIGEN_COMPRESSED_STORAGE_H
|
|
|
|
/** Stores a sparse set of values as a list of values and a list of indices.
|
|
*
|
|
*/
|
|
template<typename Scalar>
|
|
class CompressedStorage
|
|
{
|
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
|
public:
|
|
CompressedStorage()
|
|
: m_values(0), m_indices(0), m_size(0), m_allocatedSize(0)
|
|
{}
|
|
|
|
CompressedStorage(size_t size)
|
|
: m_values(0), m_indices(0), m_size(0), m_allocatedSize(0)
|
|
{
|
|
resize(size);
|
|
}
|
|
|
|
CompressedStorage(const CompressedStorage& other)
|
|
: m_values(0), m_indices(0), m_size(0), m_allocatedSize(0)
|
|
{
|
|
*this = other;
|
|
}
|
|
|
|
CompressedStorage& operator=(const CompressedStorage& other)
|
|
{
|
|
resize(other.size());
|
|
memcpy(m_values, other.m_values, m_size * sizeof(Scalar));
|
|
memcpy(m_indices, other.m_indices, m_size * sizeof(int));
|
|
return *this;
|
|
}
|
|
|
|
void swap(CompressedStorage& other)
|
|
{
|
|
std::swap(m_values, other.m_values);
|
|
std::swap(m_indices, other.m_indices);
|
|
std::swap(m_size, other.m_size);
|
|
std::swap(m_allocatedSize, other.m_allocatedSize);
|
|
}
|
|
|
|
~CompressedStorage()
|
|
{
|
|
delete[] m_values;
|
|
delete[] m_indices;
|
|
}
|
|
|
|
void reserve(size_t size)
|
|
{
|
|
size_t newAllocatedSize = m_size + size;
|
|
if (newAllocatedSize > m_allocatedSize)
|
|
reallocate(newAllocatedSize);
|
|
}
|
|
|
|
void squeeze()
|
|
{
|
|
if (m_allocatedSize>m_size)
|
|
reallocate(m_size);
|
|
}
|
|
|
|
void resize(size_t size, float reserveSizeFactor = 0)
|
|
{
|
|
if (m_allocatedSize<size)
|
|
reallocate(size + size_t(reserveSizeFactor*size));
|
|
m_size = size;
|
|
}
|
|
|
|
void append(const Scalar& v, int i)
|
|
{
|
|
int id = m_size;
|
|
resize(m_size+1, 1);
|
|
m_values[id] = v;
|
|
m_indices[id] = i;
|
|
}
|
|
|
|
inline size_t size() const { return m_size; }
|
|
inline size_t allocatedSize() const { return m_allocatedSize; }
|
|
inline void clear() { m_size = 0; }
|
|
|
|
inline Scalar& value(size_t i) { return m_values[i]; }
|
|
inline const Scalar& value(size_t i) const { return m_values[i]; }
|
|
|
|
inline int& index(size_t i) { return m_indices[i]; }
|
|
inline const int& index(size_t i) const { return m_indices[i]; }
|
|
|
|
static CompressedStorage Map(int* indices, Scalar* values, size_t size)
|
|
{
|
|
CompressedStorage res;
|
|
res.m_indices = indices;
|
|
res.m_values = values;
|
|
res.m_allocatedSize = res.m_size = size;
|
|
return res;
|
|
}
|
|
|
|
/** \returns the largest \c k such that for all \c j in [0,k) index[\c j]\<\a key */
|
|
inline int searchLowerIndex(int key) const
|
|
{
|
|
return searchLowerIndex(0, m_size, key);
|
|
}
|
|
|
|
/** \returns the largest \c k in [start,end) such that for all \c j in [start,k) index[\c j]\<\a key */
|
|
inline int searchLowerIndex(size_t start, size_t end, int key) const
|
|
{
|
|
while(end>start)
|
|
{
|
|
size_t mid = (end+start)>>1;
|
|
if (m_indices[mid]<key)
|
|
start = mid+1;
|
|
else
|
|
end = mid;
|
|
}
|
|
return start;
|
|
}
|
|
|
|
/** \returns the stored value at index \a key
|
|
* If the value does not exist, then the value \a defaultValue is returned without any insertion. */
|
|
inline Scalar at(int key, Scalar defaultValue = Scalar(0)) const
|
|
{
|
|
if (m_size==0)
|
|
return defaultValue;
|
|
else if (key==m_indices[m_size-1])
|
|
return m_values[m_size-1];
|
|
// ^^ optimization: let's first check if it is the last coefficient
|
|
// (very common in high level algorithms)
|
|
const size_t id = searchLowerIndex(0,m_size-1,key);
|
|
return ((id<m_size) && (m_indices[id]==key)) ? m_values[id] : defaultValue;
|
|
}
|
|
|
|
/** Like at(), but the search is performed in the range [start,end) */
|
|
inline Scalar atInRange(size_t start, size_t end, int key, Scalar defaultValue = Scalar(0)) const
|
|
{
|
|
if (start>=end)
|
|
return Scalar(0);
|
|
else if (end>start && key==m_indices[end-1])
|
|
return m_values[end-1];
|
|
// ^^ optimization: let's first check if it is the last coefficient
|
|
// (very common in high level algorithms)
|
|
const size_t id = searchLowerIndex(start,end-1,key);
|
|
return ((id<end) && (m_indices[id]==key)) ? m_values[id] : defaultValue;
|
|
}
|
|
|
|
/** \returns a reference to the value at index \a key
|
|
* If the value does not exist, then the value \a defaultValue is inserted
|
|
* such that the keys are sorted. */
|
|
inline Scalar& atWithInsertion(int key, Scalar defaultValue = Scalar(0))
|
|
{
|
|
size_t id = searchLowerIndex(0,m_size,key);
|
|
if (id>=m_size || m_indices[id]!=key)
|
|
{
|
|
resize(m_size+1,1);
|
|
for (size_t j=m_size-1; j>id; --j)
|
|
{
|
|
m_indices[j] = m_indices[j-1];
|
|
m_values[j] = m_values[j-1];
|
|
}
|
|
m_indices[id] = key;
|
|
m_values[id] = defaultValue;
|
|
}
|
|
return m_values[id];
|
|
}
|
|
|
|
void prune(Scalar reference, RealScalar epsilon = precision<RealScalar>())
|
|
{
|
|
size_t k = 0;
|
|
size_t n = size();
|
|
for (size_t i=0; i<n; ++i)
|
|
{
|
|
if (!ei_isMuchSmallerThan(value(i), reference, epsilon))
|
|
{
|
|
value(k) = value(i);
|
|
index(k) = index(i);
|
|
++k;
|
|
}
|
|
}
|
|
resize(k,0);
|
|
}
|
|
|
|
protected:
|
|
|
|
inline void reallocate(size_t size)
|
|
{
|
|
Scalar* newValues = new Scalar[size];
|
|
int* newIndices = new int[size];
|
|
size_t copySize = std::min(size, m_size);
|
|
// copy
|
|
memcpy(newValues, m_values, copySize * sizeof(Scalar));
|
|
memcpy(newIndices, m_indices, copySize * sizeof(int));
|
|
// delete old stuff
|
|
delete[] m_values;
|
|
delete[] m_indices;
|
|
m_values = newValues;
|
|
m_indices = newIndices;
|
|
m_allocatedSize = size;
|
|
}
|
|
|
|
protected:
|
|
Scalar* m_values;
|
|
int* m_indices;
|
|
size_t m_size;
|
|
size_t m_allocatedSize;
|
|
|
|
};
|
|
|
|
#endif // EIGEN_COMPRESSED_STORAGE_H
|