mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-07-31 17:22:07 +08:00
266 lines
10 KiB
C++
266 lines
10 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#ifndef EIGEN_BLASUTIL_H
|
|
#define EIGEN_BLASUTIL_H
|
|
|
|
// This file contains many lightweight helper classes used to
|
|
// implement and control fast level 2 and level 3 BLAS-like routines.
|
|
|
|
// forward declarations
|
|
|
|
// Provides scalar/packet-wise product and product with accumulation
|
|
// with optional conjugation of the arguments.
|
|
template<bool ConjLhs, bool ConjRhs> struct ei_conj_helper;
|
|
|
|
template<typename Scalar, typename Index, int mr, int nr, typename Conj = ei_conj_helper<false,false> >
|
|
struct ei_gebp_kernel;
|
|
|
|
template<typename Scalar, typename Index, int nr, int StorageOrder, bool Conjugate = false, bool PanelMode=false>
|
|
struct ei_gemm_pack_rhs;
|
|
|
|
template<typename Scalar, typename Index, int mr, int StorageOrder, bool Conjugate = false, bool PanelMode = false>
|
|
struct ei_gemm_pack_lhs;
|
|
|
|
template<
|
|
typename Scalar, typename Index,
|
|
int LhsStorageOrder, bool ConjugateLhs,
|
|
int RhsStorageOrder, bool ConjugateRhs,
|
|
int ResStorageOrder>
|
|
struct ei_general_matrix_matrix_product;
|
|
|
|
template<bool ConjugateLhs, bool ConjugateRhs, typename Scalar, typename Index, typename RhsType>
|
|
static void ei_cache_friendly_product_colmajor_times_vector(
|
|
Index size, const Scalar* lhs, Index lhsStride, const RhsType& rhs, Scalar* res, Scalar alpha);
|
|
|
|
template<bool ConjugateLhs, bool ConjugateRhs, typename Scalar, typename Index, typename ResType>
|
|
static void ei_cache_friendly_product_rowmajor_times_vector(
|
|
const Scalar* lhs, Index lhsStride, const Scalar* rhs, Index rhsSize, ResType& res, Scalar alpha);
|
|
|
|
template<> struct ei_conj_helper<false,false>
|
|
{
|
|
template<typename T>
|
|
EIGEN_STRONG_INLINE T pmadd(const T& x, const T& y, const T& c) const { return ei_pmadd(x,y,c); }
|
|
template<typename T>
|
|
EIGEN_STRONG_INLINE T pmul(const T& x, const T& y) const { return ei_pmul(x,y); }
|
|
};
|
|
|
|
template<> struct ei_conj_helper<false,true>
|
|
{
|
|
template<typename T> std::complex<T>
|
|
pmadd(const std::complex<T>& x, const std::complex<T>& y, const std::complex<T>& c) const
|
|
{ return c + pmul(x,y); }
|
|
|
|
template<typename T> std::complex<T> pmul(const std::complex<T>& x, const std::complex<T>& y) const
|
|
{ return std::complex<T>(ei_real(x)*ei_real(y) + ei_imag(x)*ei_imag(y), ei_imag(x)*ei_real(y) - ei_real(x)*ei_imag(y)); }
|
|
};
|
|
|
|
template<> struct ei_conj_helper<true,false>
|
|
{
|
|
template<typename T> std::complex<T>
|
|
pmadd(const std::complex<T>& x, const std::complex<T>& y, const std::complex<T>& c) const
|
|
{ return c + pmul(x,y); }
|
|
|
|
template<typename T> std::complex<T> pmul(const std::complex<T>& x, const std::complex<T>& y) const
|
|
{ return std::complex<T>(ei_real(x)*ei_real(y) + ei_imag(x)*ei_imag(y), ei_real(x)*ei_imag(y) - ei_imag(x)*ei_real(y)); }
|
|
};
|
|
|
|
template<> struct ei_conj_helper<true,true>
|
|
{
|
|
template<typename T> std::complex<T>
|
|
pmadd(const std::complex<T>& x, const std::complex<T>& y, const std::complex<T>& c) const
|
|
{ return c + pmul(x,y); }
|
|
|
|
template<typename T> std::complex<T> pmul(const std::complex<T>& x, const std::complex<T>& y) const
|
|
{ return std::complex<T>(ei_real(x)*ei_real(y) - ei_imag(x)*ei_imag(y), - ei_real(x)*ei_imag(y) - ei_imag(x)*ei_real(y)); }
|
|
};
|
|
|
|
// Lightweight helper class to access matrix coefficients.
|
|
// Yes, this is somehow redundant with Map<>, but this version is much much lighter,
|
|
// and so I hope better compilation performance (time and code quality).
|
|
template<typename Scalar, typename Index, int StorageOrder>
|
|
class ei_blas_data_mapper
|
|
{
|
|
public:
|
|
ei_blas_data_mapper(Scalar* data, Index stride) : m_data(data), m_stride(stride) {}
|
|
EIGEN_STRONG_INLINE Scalar& operator()(Index i, Index j)
|
|
{ return m_data[StorageOrder==RowMajor ? j + i*m_stride : i + j*m_stride]; }
|
|
protected:
|
|
Scalar* EIGEN_RESTRICT m_data;
|
|
Index m_stride;
|
|
};
|
|
|
|
// lightweight helper class to access matrix coefficients (const version)
|
|
template<typename Scalar, typename Index, int StorageOrder>
|
|
class ei_const_blas_data_mapper
|
|
{
|
|
public:
|
|
ei_const_blas_data_mapper(const Scalar* data, Index stride) : m_data(data), m_stride(stride) {}
|
|
EIGEN_STRONG_INLINE const Scalar& operator()(Index i, Index j) const
|
|
{ return m_data[StorageOrder==RowMajor ? j + i*m_stride : i + j*m_stride]; }
|
|
protected:
|
|
const Scalar* EIGEN_RESTRICT m_data;
|
|
Index m_stride;
|
|
};
|
|
|
|
// Defines various constant controlling register blocking for matrix-matrix algorithms.
|
|
template<typename Scalar>
|
|
struct ei_product_blocking_traits
|
|
{
|
|
typedef typename ei_packet_traits<Scalar>::type PacketType;
|
|
enum {
|
|
PacketSize = sizeof(PacketType)/sizeof(Scalar),
|
|
NumberOfRegisters = EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS,
|
|
|
|
// register block size along the N direction (must be either 2 or 4)
|
|
nr = NumberOfRegisters/4,
|
|
|
|
// register block size along the M direction (currently, this one cannot be modified)
|
|
mr = 2 * PacketSize
|
|
};
|
|
};
|
|
|
|
template<typename Real>
|
|
struct ei_product_blocking_traits<std::complex<Real> >
|
|
{
|
|
typedef std::complex<Real> Scalar;
|
|
typedef typename ei_packet_traits<Scalar>::type PacketType;
|
|
enum {
|
|
PacketSize = sizeof(PacketType)/sizeof(Scalar),
|
|
nr = 2,
|
|
mr = 2 * PacketSize
|
|
};
|
|
};
|
|
|
|
/* Helper class to analyze the factors of a Product expression.
|
|
* In particular it allows to pop out operator-, scalar multiples,
|
|
* and conjugate */
|
|
template<typename XprType> struct ei_blas_traits
|
|
{
|
|
typedef typename ei_traits<XprType>::Scalar Scalar;
|
|
typedef const XprType& ExtractType;
|
|
typedef XprType _ExtractType;
|
|
enum {
|
|
IsComplex = NumTraits<Scalar>::IsComplex,
|
|
IsTransposed = false,
|
|
NeedToConjugate = false,
|
|
HasUsableDirectAccess = ( (int(XprType::Flags)&DirectAccessBit)
|
|
&& ( /* Uncomment this when the low-level matrix-vector product functions support strided vectors
|
|
bool(XprType::IsVectorAtCompileTime)
|
|
|| */
|
|
int(ei_inner_stride_at_compile_time<XprType>::ret) == 1)
|
|
) ? 1 : 0
|
|
};
|
|
typedef typename ei_meta_if<bool(HasUsableDirectAccess),
|
|
ExtractType,
|
|
typename _ExtractType::PlainObject
|
|
>::ret DirectLinearAccessType;
|
|
static inline ExtractType extract(const XprType& x) { return x; }
|
|
static inline Scalar extractScalarFactor(const XprType&) { return Scalar(1); }
|
|
};
|
|
|
|
// pop conjugate
|
|
template<typename Scalar, typename NestedXpr>
|
|
struct ei_blas_traits<CwiseUnaryOp<ei_scalar_conjugate_op<Scalar>, NestedXpr> >
|
|
: ei_blas_traits<NestedXpr>
|
|
{
|
|
typedef ei_blas_traits<NestedXpr> Base;
|
|
typedef CwiseUnaryOp<ei_scalar_conjugate_op<Scalar>, NestedXpr> XprType;
|
|
typedef typename Base::ExtractType ExtractType;
|
|
|
|
enum {
|
|
IsComplex = NumTraits<Scalar>::IsComplex,
|
|
NeedToConjugate = Base::NeedToConjugate ? 0 : IsComplex
|
|
};
|
|
static inline ExtractType extract(const XprType& x) { return Base::extract(x.nestedExpression()); }
|
|
static inline Scalar extractScalarFactor(const XprType& x) { return ei_conj(Base::extractScalarFactor(x.nestedExpression())); }
|
|
};
|
|
|
|
// pop scalar multiple
|
|
template<typename Scalar, typename NestedXpr>
|
|
struct ei_blas_traits<CwiseUnaryOp<ei_scalar_multiple_op<Scalar>, NestedXpr> >
|
|
: ei_blas_traits<NestedXpr>
|
|
{
|
|
typedef ei_blas_traits<NestedXpr> Base;
|
|
typedef CwiseUnaryOp<ei_scalar_multiple_op<Scalar>, NestedXpr> XprType;
|
|
typedef typename Base::ExtractType ExtractType;
|
|
static inline ExtractType extract(const XprType& x) { return Base::extract(x.nestedExpression()); }
|
|
static inline Scalar extractScalarFactor(const XprType& x)
|
|
{ return x.functor().m_other * Base::extractScalarFactor(x.nestedExpression()); }
|
|
};
|
|
|
|
// pop opposite
|
|
template<typename Scalar, typename NestedXpr>
|
|
struct ei_blas_traits<CwiseUnaryOp<ei_scalar_opposite_op<Scalar>, NestedXpr> >
|
|
: ei_blas_traits<NestedXpr>
|
|
{
|
|
typedef ei_blas_traits<NestedXpr> Base;
|
|
typedef CwiseUnaryOp<ei_scalar_opposite_op<Scalar>, NestedXpr> XprType;
|
|
typedef typename Base::ExtractType ExtractType;
|
|
static inline ExtractType extract(const XprType& x) { return Base::extract(x.nestedExpression()); }
|
|
static inline Scalar extractScalarFactor(const XprType& x)
|
|
{ return - Base::extractScalarFactor(x.nestedExpression()); }
|
|
};
|
|
|
|
// pop/push transpose
|
|
template<typename NestedXpr>
|
|
struct ei_blas_traits<Transpose<NestedXpr> >
|
|
: ei_blas_traits<NestedXpr>
|
|
{
|
|
typedef typename NestedXpr::Scalar Scalar;
|
|
typedef ei_blas_traits<NestedXpr> Base;
|
|
typedef Transpose<NestedXpr> XprType;
|
|
typedef Transpose<typename Base::_ExtractType> ExtractType;
|
|
typedef Transpose<typename Base::_ExtractType> _ExtractType;
|
|
typedef typename ei_meta_if<bool(Base::HasUsableDirectAccess),
|
|
ExtractType,
|
|
typename ExtractType::PlainObject
|
|
>::ret DirectLinearAccessType;
|
|
enum {
|
|
IsTransposed = Base::IsTransposed ? 0 : 1
|
|
};
|
|
static inline const ExtractType extract(const XprType& x) { return Base::extract(x.nestedExpression()); }
|
|
static inline Scalar extractScalarFactor(const XprType& x) { return Base::extractScalarFactor(x.nestedExpression()); }
|
|
};
|
|
|
|
template<typename T, bool HasUsableDirectAccess=ei_blas_traits<T>::HasUsableDirectAccess>
|
|
struct ei_extract_data_selector {
|
|
static const typename T::Scalar* run(const T& m)
|
|
{
|
|
return &ei_blas_traits<T>::extract(m).const_cast_derived().coeffRef(0,0); // FIXME this should be .data()
|
|
}
|
|
};
|
|
|
|
template<typename T>
|
|
struct ei_extract_data_selector<T,false> {
|
|
static typename T::Scalar* run(const T&) { return 0; }
|
|
};
|
|
|
|
template<typename T> const typename T::Scalar* ei_extract_data(const T& m)
|
|
{
|
|
return ei_extract_data_selector<T>::run(m);
|
|
}
|
|
|
|
#endif // EIGEN_BLASUTIL_H
|