mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-05-23 13:07:40 +08:00
326 lines
12 KiB
C++
326 lines
12 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#ifndef EIGEN_PERMUTATIONMATRIX_H
|
|
#define EIGEN_PERMUTATIONMATRIX_H
|
|
|
|
/** \class PermutationMatrix
|
|
*
|
|
* \brief Permutation matrix
|
|
*
|
|
* \param SizeAtCompileTime the number of rows/cols, or Dynamic
|
|
* \param MaxSizeAtCompileTime the maximum number of rows/cols, or Dynamic. This optional parameter defaults to SizeAtCompileTime. Most of the time, you should not have to specify it.
|
|
*
|
|
* This class represents a permutation matrix, internally stored as a vector of integers.
|
|
* The convention followed here is that if \f$ \sigma \f$ is a permutation, the corresponding permutation matrix
|
|
* \f$ P_\sigma \f$ is such that if \f$ (e_1,\ldots,e_p) \f$ is the canonical basis, we have:
|
|
* \f[ P_\sigma(e_i) = e_{\sigma(i)}. \f]
|
|
* This convention ensures that for any two permutations \f$ \sigma, \tau \f$, we have:
|
|
* \f[ P_{\sigma\circ\tau} = P_\sigma P_\tau. \f]
|
|
*
|
|
* Permutation matrices are square and invertible.
|
|
*
|
|
* Notice that in addition to the member functions and operators listed here, there also are non-member
|
|
* operator* to multiply a PermutationMatrix with any kind of matrix expression (MatrixBase) on either side.
|
|
*
|
|
* \sa class DiagonalMatrix
|
|
*/
|
|
template<int SizeAtCompileTime, int MaxSizeAtCompileTime = SizeAtCompileTime> class PermutationMatrix;
|
|
template<typename PermutationType, typename MatrixType, int Side> struct ei_permut_matrix_product_retval;
|
|
|
|
template<int SizeAtCompileTime, int MaxSizeAtCompileTime>
|
|
struct ei_traits<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime> >
|
|
: ei_traits<Matrix<int,SizeAtCompileTime,SizeAtCompileTime,0,MaxSizeAtCompileTime,MaxSizeAtCompileTime> >
|
|
{};
|
|
|
|
template<int SizeAtCompileTime, int MaxSizeAtCompileTime>
|
|
class PermutationMatrix : public AnyMatrixBase<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime> >
|
|
{
|
|
public:
|
|
|
|
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
|
typedef ei_traits<PermutationMatrix> Traits;
|
|
typedef Matrix<int,SizeAtCompileTime,SizeAtCompileTime,0,MaxSizeAtCompileTime,MaxSizeAtCompileTime>
|
|
DenseMatrixType;
|
|
enum {
|
|
Flags = Traits::Flags,
|
|
CoeffReadCost = Traits::CoeffReadCost,
|
|
RowsAtCompileTime = Traits::RowsAtCompileTime,
|
|
ColsAtCompileTime = Traits::ColsAtCompileTime,
|
|
MaxRowsAtCompileTime = Traits::MaxRowsAtCompileTime,
|
|
MaxColsAtCompileTime = Traits::MaxColsAtCompileTime
|
|
};
|
|
typedef typename Traits::Scalar Scalar;
|
|
#endif
|
|
|
|
typedef Matrix<int, SizeAtCompileTime, 1, 0, MaxSizeAtCompileTime, 1> IndicesType;
|
|
|
|
inline PermutationMatrix()
|
|
{
|
|
}
|
|
|
|
/** Copy constructor. */
|
|
template<int OtherSize, int OtherMaxSize>
|
|
inline PermutationMatrix(const PermutationMatrix<OtherSize, OtherMaxSize>& other)
|
|
: m_indices(other.indices()) {}
|
|
|
|
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
|
/** Standard copy constructor. Defined only to prevent a default copy constructor
|
|
* from hiding the other templated constructor */
|
|
inline PermutationMatrix(const PermutationMatrix& other) : m_indices(other.indices()) {}
|
|
#endif
|
|
|
|
/** Generic constructor from expression of the indices. The indices
|
|
* array has the meaning that the permutations sends each integer i to indices[i].
|
|
*
|
|
* \warning It is your responsibility to check that the indices array that you passes actually
|
|
* describes a permutation, i.e., each value between 0 and n-1 occurs exactly once, where n is the
|
|
* array's size.
|
|
*/
|
|
template<typename Other>
|
|
explicit inline PermutationMatrix(const MatrixBase<Other>& indices) : m_indices(indices)
|
|
{}
|
|
|
|
/** Copies the other permutation into *this */
|
|
template<int OtherSize, int OtherMaxSize>
|
|
PermutationMatrix& operator=(const PermutationMatrix<OtherSize, OtherMaxSize>& other)
|
|
{
|
|
m_indices = other.indices();
|
|
return *this;
|
|
}
|
|
|
|
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
|
/** This is a special case of the templated operator=. Its purpose is to
|
|
* prevent a default operator= from hiding the templated operator=.
|
|
*/
|
|
PermutationMatrix& operator=(const PermutationMatrix& other)
|
|
{
|
|
m_indices = other.m_indices;
|
|
return *this;
|
|
}
|
|
#endif
|
|
|
|
/** Constructs an uninitialized permutation matrix of given size.
|
|
*/
|
|
inline PermutationMatrix(int size) : m_indices(size)
|
|
{}
|
|
|
|
/** \returns the number of rows */
|
|
inline int rows() const { return m_indices.size(); }
|
|
|
|
/** \returns the number of columns */
|
|
inline int cols() const { return m_indices.size(); }
|
|
|
|
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
|
template<typename DenseDerived>
|
|
void evalTo(MatrixBase<DenseDerived>& other) const
|
|
{
|
|
other.setZero();
|
|
for (int i=0; i<rows();++i)
|
|
other.coeffRef(m_indices.coeff(i),i) = typename DenseDerived::Scalar(1);
|
|
}
|
|
#endif
|
|
|
|
/** \returns a Matrix object initialized from this permutation matrix. Notice that it
|
|
* is inefficient to return this Matrix object by value. For efficiency, favor using
|
|
* the Matrix constructor taking AnyMatrixBase objects.
|
|
*/
|
|
DenseMatrixType toDenseMatrix() const
|
|
{
|
|
return *this;
|
|
}
|
|
|
|
/** const version of indices(). */
|
|
const IndicesType& indices() const { return m_indices; }
|
|
/** \returns a reference to the stored array representing the permutation. */
|
|
IndicesType& indices() { return m_indices; }
|
|
|
|
/** Resizes to given size.
|
|
*/
|
|
inline void resize(int size)
|
|
{
|
|
m_indices.resize(size);
|
|
}
|
|
|
|
/** Sets *this to be the identity permutation matrix */
|
|
void setIdentity()
|
|
{
|
|
for(int i = 0; i < m_indices.size(); ++i)
|
|
m_indices.coeffRef(i) = i;
|
|
}
|
|
|
|
/** Sets *this to be the identity permutation matrix of given size.
|
|
*/
|
|
void setIdentity(int size)
|
|
{
|
|
resize(size);
|
|
setIdentity();
|
|
}
|
|
|
|
/** Multiplies *this by the transposition \f$(ij)\f$ on the left.
|
|
*
|
|
* \returns a reference to *this.
|
|
*
|
|
* \warning This is much slower than applyTranspositionOnTheRight(int,int):
|
|
* this has linear complexity and requires a lot of branching.
|
|
*
|
|
* \sa applyTranspositionOnTheRight(int,int)
|
|
*/
|
|
PermutationMatrix& applyTranspositionOnTheLeft(int i, int j)
|
|
{
|
|
ei_assert(i>=0 && j>=0 && i<m_indices.size() && j<m_indices.size());
|
|
for(int k = 0; k < m_indices.size(); ++k)
|
|
{
|
|
if(m_indices.coeff(k) == i) m_indices.coeffRef(k) = j;
|
|
else if(m_indices.coeff(k) == j) m_indices.coeffRef(k) = i;
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
/** Multiplies *this by the transposition \f$(ij)\f$ on the right.
|
|
*
|
|
* \returns a reference to *this.
|
|
*
|
|
* This is a fast operation, it only consists in swapping two indices.
|
|
*
|
|
* \sa applyTranspositionOnTheLeft(int,int)
|
|
*/
|
|
PermutationMatrix& applyTranspositionOnTheRight(int i, int j)
|
|
{
|
|
ei_assert(i>=0 && j>=0 && i<m_indices.size() && j<m_indices.size());
|
|
std::swap(m_indices.coeffRef(i), m_indices.coeffRef(j));
|
|
return *this;
|
|
}
|
|
|
|
/**** inversion and multiplication helpers to hopefully get RVO ****/
|
|
|
|
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
|
protected:
|
|
enum Inverse_t {Inverse};
|
|
PermutationMatrix(Inverse_t, const PermutationMatrix& other)
|
|
: m_indices(other.m_indices.size())
|
|
{
|
|
for (int i=0; i<rows();++i) m_indices.coeffRef(other.m_indices.coeff(i)) = i;
|
|
}
|
|
enum Product_t {Product};
|
|
PermutationMatrix(Product_t, const PermutationMatrix& lhs, const PermutationMatrix& rhs)
|
|
: m_indices(lhs.m_indices.size())
|
|
{
|
|
ei_assert(lhs.cols() == rhs.rows());
|
|
for (int i=0; i<rows();++i) m_indices.coeffRef(i) = lhs.m_indices.coeff(rhs.m_indices.coeff(i));
|
|
}
|
|
#endif
|
|
|
|
public:
|
|
/** \returns the inverse permutation matrix.
|
|
*
|
|
* \note \note_try_to_help_rvo
|
|
*/
|
|
inline PermutationMatrix inverse() const
|
|
{ return PermutationMatrix(Inverse, *this); }
|
|
/** \returns the product permutation matrix.
|
|
*
|
|
* \note \note_try_to_help_rvo
|
|
*/
|
|
template<int OtherSize, int OtherMaxSize>
|
|
inline PermutationMatrix operator*(const PermutationMatrix<OtherSize, OtherMaxSize>& other) const
|
|
{ return PermutationMatrix(Product, *this, other); }
|
|
|
|
protected:
|
|
|
|
IndicesType m_indices;
|
|
};
|
|
|
|
/** \returns the matrix with the permutation applied to the columns.
|
|
*/
|
|
template<typename Derived, int SizeAtCompileTime, int MaxSizeAtCompileTime>
|
|
inline const ei_permut_matrix_product_retval<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime>, Derived, OnTheRight>
|
|
operator*(const MatrixBase<Derived>& matrix,
|
|
const PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime> &permutation)
|
|
{
|
|
return ei_permut_matrix_product_retval
|
|
<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime>, Derived, OnTheRight>
|
|
(permutation, matrix.derived());
|
|
}
|
|
|
|
/** \returns the matrix with the permutation applied to the rows.
|
|
*/
|
|
template<typename Derived, int SizeAtCompileTime, int MaxSizeAtCompileTime>
|
|
inline const ei_permut_matrix_product_retval
|
|
<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime>, Derived, OnTheLeft>
|
|
operator*(const PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime> &permutation,
|
|
const MatrixBase<Derived>& matrix)
|
|
{
|
|
return ei_permut_matrix_product_retval
|
|
<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime>, Derived, OnTheLeft>
|
|
(permutation, matrix.derived());
|
|
}
|
|
|
|
template<typename PermutationType, typename MatrixType, int Side>
|
|
struct ei_traits<ei_permut_matrix_product_retval<PermutationType, MatrixType, Side> >
|
|
{
|
|
typedef typename MatrixType::PlainMatrixType ReturnMatrixType;
|
|
};
|
|
|
|
template<typename PermutationType, typename MatrixType, int Side>
|
|
struct ei_permut_matrix_product_retval
|
|
: public ReturnByValue<ei_permut_matrix_product_retval<PermutationType, MatrixType, Side> >
|
|
{
|
|
typedef typename ei_cleantype<typename MatrixType::Nested>::type MatrixTypeNestedCleaned;
|
|
|
|
ei_permut_matrix_product_retval(const PermutationType& perm, const MatrixType& matrix)
|
|
: m_permutation(perm), m_matrix(matrix)
|
|
{}
|
|
|
|
inline int rows() const { return m_matrix.rows(); }
|
|
inline int cols() const { return m_matrix.cols(); }
|
|
|
|
template<typename Dest> inline void evalTo(Dest& dst) const
|
|
{
|
|
const int n = Side==OnTheLeft ? rows() : cols();
|
|
for(int i = 0; i < n; ++i)
|
|
{
|
|
Block<
|
|
Dest,
|
|
Side==OnTheLeft ? 1 : Dest::RowsAtCompileTime,
|
|
Side==OnTheRight ? 1 : Dest::ColsAtCompileTime
|
|
>(dst, Side==OnTheLeft ? m_permutation.indices().coeff(i) : i)
|
|
|
|
=
|
|
|
|
Block<
|
|
MatrixTypeNestedCleaned,
|
|
Side==OnTheLeft ? 1 : MatrixType::RowsAtCompileTime,
|
|
Side==OnTheRight ? 1 : MatrixType::ColsAtCompileTime
|
|
>(m_matrix, Side==OnTheRight ? m_permutation.indices().coeff(i) : i);
|
|
}
|
|
}
|
|
|
|
protected:
|
|
const PermutationType& m_permutation;
|
|
const typename MatrixType::Nested m_matrix;
|
|
};
|
|
|
|
#endif // EIGEN_PERMUTATIONMATRIX_H
|