eigen/Eigen/src/Core/PermutationMatrix.h
Hauke Heibel 832045d363 Warning 4512 (assignment operators could not be generated) is now simply disabled.
All unimplemented assignment operators have been removed.
2009-12-14 10:32:43 +01:00

326 lines
12 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_PERMUTATIONMATRIX_H
#define EIGEN_PERMUTATIONMATRIX_H
/** \class PermutationMatrix
*
* \brief Permutation matrix
*
* \param SizeAtCompileTime the number of rows/cols, or Dynamic
* \param MaxSizeAtCompileTime the maximum number of rows/cols, or Dynamic. This optional parameter defaults to SizeAtCompileTime. Most of the time, you should not have to specify it.
*
* This class represents a permutation matrix, internally stored as a vector of integers.
* The convention followed here is that if \f$ \sigma \f$ is a permutation, the corresponding permutation matrix
* \f$ P_\sigma \f$ is such that if \f$ (e_1,\ldots,e_p) \f$ is the canonical basis, we have:
* \f[ P_\sigma(e_i) = e_{\sigma(i)}. \f]
* This convention ensures that for any two permutations \f$ \sigma, \tau \f$, we have:
* \f[ P_{\sigma\circ\tau} = P_\sigma P_\tau. \f]
*
* Permutation matrices are square and invertible.
*
* Notice that in addition to the member functions and operators listed here, there also are non-member
* operator* to multiply a PermutationMatrix with any kind of matrix expression (MatrixBase) on either side.
*
* \sa class DiagonalMatrix
*/
template<int SizeAtCompileTime, int MaxSizeAtCompileTime = SizeAtCompileTime> class PermutationMatrix;
template<typename PermutationType, typename MatrixType, int Side> struct ei_permut_matrix_product_retval;
template<int SizeAtCompileTime, int MaxSizeAtCompileTime>
struct ei_traits<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime> >
: ei_traits<Matrix<int,SizeAtCompileTime,SizeAtCompileTime,0,MaxSizeAtCompileTime,MaxSizeAtCompileTime> >
{};
template<int SizeAtCompileTime, int MaxSizeAtCompileTime>
class PermutationMatrix : public AnyMatrixBase<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime> >
{
public:
#ifndef EIGEN_PARSED_BY_DOXYGEN
typedef ei_traits<PermutationMatrix> Traits;
typedef Matrix<int,SizeAtCompileTime,SizeAtCompileTime,0,MaxSizeAtCompileTime,MaxSizeAtCompileTime>
DenseMatrixType;
enum {
Flags = Traits::Flags,
CoeffReadCost = Traits::CoeffReadCost,
RowsAtCompileTime = Traits::RowsAtCompileTime,
ColsAtCompileTime = Traits::ColsAtCompileTime,
MaxRowsAtCompileTime = Traits::MaxRowsAtCompileTime,
MaxColsAtCompileTime = Traits::MaxColsAtCompileTime
};
typedef typename Traits::Scalar Scalar;
#endif
typedef Matrix<int, SizeAtCompileTime, 1, 0, MaxSizeAtCompileTime, 1> IndicesType;
inline PermutationMatrix()
{
}
/** Copy constructor. */
template<int OtherSize, int OtherMaxSize>
inline PermutationMatrix(const PermutationMatrix<OtherSize, OtherMaxSize>& other)
: m_indices(other.indices()) {}
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** Standard copy constructor. Defined only to prevent a default copy constructor
* from hiding the other templated constructor */
inline PermutationMatrix(const PermutationMatrix& other) : m_indices(other.indices()) {}
#endif
/** Generic constructor from expression of the indices. The indices
* array has the meaning that the permutations sends each integer i to indices[i].
*
* \warning It is your responsibility to check that the indices array that you passes actually
* describes a permutation, i.e., each value between 0 and n-1 occurs exactly once, where n is the
* array's size.
*/
template<typename Other>
explicit inline PermutationMatrix(const MatrixBase<Other>& indices) : m_indices(indices)
{}
/** Copies the other permutation into *this */
template<int OtherSize, int OtherMaxSize>
PermutationMatrix& operator=(const PermutationMatrix<OtherSize, OtherMaxSize>& other)
{
m_indices = other.indices();
return *this;
}
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** This is a special case of the templated operator=. Its purpose is to
* prevent a default operator= from hiding the templated operator=.
*/
PermutationMatrix& operator=(const PermutationMatrix& other)
{
m_indices = other.m_indices;
return *this;
}
#endif
/** Constructs an uninitialized permutation matrix of given size.
*/
inline PermutationMatrix(int size) : m_indices(size)
{}
/** \returns the number of rows */
inline int rows() const { return m_indices.size(); }
/** \returns the number of columns */
inline int cols() const { return m_indices.size(); }
#ifndef EIGEN_PARSED_BY_DOXYGEN
template<typename DenseDerived>
void evalTo(MatrixBase<DenseDerived>& other) const
{
other.setZero();
for (int i=0; i<rows();++i)
other.coeffRef(m_indices.coeff(i),i) = typename DenseDerived::Scalar(1);
}
#endif
/** \returns a Matrix object initialized from this permutation matrix. Notice that it
* is inefficient to return this Matrix object by value. For efficiency, favor using
* the Matrix constructor taking AnyMatrixBase objects.
*/
DenseMatrixType toDenseMatrix() const
{
return *this;
}
/** const version of indices(). */
const IndicesType& indices() const { return m_indices; }
/** \returns a reference to the stored array representing the permutation. */
IndicesType& indices() { return m_indices; }
/** Resizes to given size.
*/
inline void resize(int size)
{
m_indices.resize(size);
}
/** Sets *this to be the identity permutation matrix */
void setIdentity()
{
for(int i = 0; i < m_indices.size(); ++i)
m_indices.coeffRef(i) = i;
}
/** Sets *this to be the identity permutation matrix of given size.
*/
void setIdentity(int size)
{
resize(size);
setIdentity();
}
/** Multiplies *this by the transposition \f$(ij)\f$ on the left.
*
* \returns a reference to *this.
*
* \warning This is much slower than applyTranspositionOnTheRight(int,int):
* this has linear complexity and requires a lot of branching.
*
* \sa applyTranspositionOnTheRight(int,int)
*/
PermutationMatrix& applyTranspositionOnTheLeft(int i, int j)
{
ei_assert(i>=0 && j>=0 && i<m_indices.size() && j<m_indices.size());
for(int k = 0; k < m_indices.size(); ++k)
{
if(m_indices.coeff(k) == i) m_indices.coeffRef(k) = j;
else if(m_indices.coeff(k) == j) m_indices.coeffRef(k) = i;
}
return *this;
}
/** Multiplies *this by the transposition \f$(ij)\f$ on the right.
*
* \returns a reference to *this.
*
* This is a fast operation, it only consists in swapping two indices.
*
* \sa applyTranspositionOnTheLeft(int,int)
*/
PermutationMatrix& applyTranspositionOnTheRight(int i, int j)
{
ei_assert(i>=0 && j>=0 && i<m_indices.size() && j<m_indices.size());
std::swap(m_indices.coeffRef(i), m_indices.coeffRef(j));
return *this;
}
/**** inversion and multiplication helpers to hopefully get RVO ****/
#ifndef EIGEN_PARSED_BY_DOXYGEN
protected:
enum Inverse_t {Inverse};
PermutationMatrix(Inverse_t, const PermutationMatrix& other)
: m_indices(other.m_indices.size())
{
for (int i=0; i<rows();++i) m_indices.coeffRef(other.m_indices.coeff(i)) = i;
}
enum Product_t {Product};
PermutationMatrix(Product_t, const PermutationMatrix& lhs, const PermutationMatrix& rhs)
: m_indices(lhs.m_indices.size())
{
ei_assert(lhs.cols() == rhs.rows());
for (int i=0; i<rows();++i) m_indices.coeffRef(i) = lhs.m_indices.coeff(rhs.m_indices.coeff(i));
}
#endif
public:
/** \returns the inverse permutation matrix.
*
* \note \note_try_to_help_rvo
*/
inline PermutationMatrix inverse() const
{ return PermutationMatrix(Inverse, *this); }
/** \returns the product permutation matrix.
*
* \note \note_try_to_help_rvo
*/
template<int OtherSize, int OtherMaxSize>
inline PermutationMatrix operator*(const PermutationMatrix<OtherSize, OtherMaxSize>& other) const
{ return PermutationMatrix(Product, *this, other); }
protected:
IndicesType m_indices;
};
/** \returns the matrix with the permutation applied to the columns.
*/
template<typename Derived, int SizeAtCompileTime, int MaxSizeAtCompileTime>
inline const ei_permut_matrix_product_retval<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime>, Derived, OnTheRight>
operator*(const MatrixBase<Derived>& matrix,
const PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime> &permutation)
{
return ei_permut_matrix_product_retval
<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime>, Derived, OnTheRight>
(permutation, matrix.derived());
}
/** \returns the matrix with the permutation applied to the rows.
*/
template<typename Derived, int SizeAtCompileTime, int MaxSizeAtCompileTime>
inline const ei_permut_matrix_product_retval
<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime>, Derived, OnTheLeft>
operator*(const PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime> &permutation,
const MatrixBase<Derived>& matrix)
{
return ei_permut_matrix_product_retval
<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime>, Derived, OnTheLeft>
(permutation, matrix.derived());
}
template<typename PermutationType, typename MatrixType, int Side>
struct ei_traits<ei_permut_matrix_product_retval<PermutationType, MatrixType, Side> >
{
typedef typename MatrixType::PlainMatrixType ReturnMatrixType;
};
template<typename PermutationType, typename MatrixType, int Side>
struct ei_permut_matrix_product_retval
: public ReturnByValue<ei_permut_matrix_product_retval<PermutationType, MatrixType, Side> >
{
typedef typename ei_cleantype<typename MatrixType::Nested>::type MatrixTypeNestedCleaned;
ei_permut_matrix_product_retval(const PermutationType& perm, const MatrixType& matrix)
: m_permutation(perm), m_matrix(matrix)
{}
inline int rows() const { return m_matrix.rows(); }
inline int cols() const { return m_matrix.cols(); }
template<typename Dest> inline void evalTo(Dest& dst) const
{
const int n = Side==OnTheLeft ? rows() : cols();
for(int i = 0; i < n; ++i)
{
Block<
Dest,
Side==OnTheLeft ? 1 : Dest::RowsAtCompileTime,
Side==OnTheRight ? 1 : Dest::ColsAtCompileTime
>(dst, Side==OnTheLeft ? m_permutation.indices().coeff(i) : i)
=
Block<
MatrixTypeNestedCleaned,
Side==OnTheLeft ? 1 : MatrixType::RowsAtCompileTime,
Side==OnTheRight ? 1 : MatrixType::ColsAtCompileTime
>(m_matrix, Side==OnTheRight ? m_permutation.indices().coeff(i) : i);
}
}
protected:
const PermutationType& m_permutation;
const typename MatrixType::Nested m_matrix;
};
#endif // EIGEN_PERMUTATIONMATRIX_H