eigen/Eigen/src/Geometry/Transform.h
Benoit Jacob c94be35bc8 introduce copyCoeff and copyPacket methods in MatrixBase, used by
Assign, in preparation for new Swap impl reusing Assign code.
remove last remnant of old Inverse class in Transform.
2008-08-05 18:00:23 +00:00

439 lines
16 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_TRANSFORM_H
#define EIGEN_TRANSFORM_H
// Note that we have to pass Dim and HDim because it is not allowed to use a template
// parameter to define a template specialization. To be more precise, in the following
// specializations, it is not allowed to use Dim+1 instead of HDim.
template< typename Other,
int Dim,
int HDim,
int OtherRows=Other::RowsAtCompileTime,
int OtherCols=Other::ColsAtCompileTime>
struct ei_transform_product_impl;
/** \geometry_module \ingroup Geometry
*
* \class Transform
*
* \brief Represents an homogeneous transformation in a N dimensional space
*
* \param _Scalar the scalar type, i.e., the type of the coefficients
* \param _Dim the dimension of the space
*
* The homography is internally represented and stored as a (Dim+1)^2 matrix which
* is available through the matrix() method.
*
* Conversion methods from/to Qt's QMatrix are available if the preprocessor token
* EIGEN_QT_SUPPORT is defined.
*
* \sa class Matrix, class Quaternion
*/
template<typename _Scalar, int _Dim>
class Transform
{
public:
enum {
Dim = _Dim, ///< space dimension in which the transformation holds
HDim = _Dim+1 ///< size of a respective homogeneous vector
};
/** the scalar type of the coefficients */
typedef _Scalar Scalar;
/** type of the matrix used to represent the transformation */
typedef Matrix<Scalar,HDim,HDim> MatrixType;
/** type of the matrix used to represent the affine part of the transformation */
typedef Matrix<Scalar,Dim,Dim> AffineMatrixType;
/** type of read/write reference to the affine part of the transformation */
typedef Block<MatrixType,Dim,Dim> AffinePart;
/** type of a vector */
typedef Matrix<Scalar,Dim,1> VectorType;
/** type of a read/write reference to the translation part of the rotation */
typedef Block<MatrixType,Dim,1> TranslationPart;
protected:
MatrixType m_matrix;
public:
/** Default constructor without initialization of the coefficients. */
Transform() { }
inline Transform(const Transform& other)
{ m_matrix = other.m_matrix; }
inline Transform& operator=(const Transform& other)
{ m_matrix = other.m_matrix; return *this; }
/** Constructs and initializes a transformation from a (Dim+1)^2 matrix. */
template<typename OtherDerived>
inline explicit Transform(const MatrixBase<OtherDerived>& other)
{ m_matrix = other; }
/** Set \c *this from a (Dim+1)^2 matrix. */
template<typename OtherDerived>
inline Transform& operator=(const MatrixBase<OtherDerived>& other)
{ m_matrix = other; return *this; }
#ifdef EIGEN_QT_SUPPORT
inline Transform(const QMatrix& other);
inline Transform& operator=(const QMatrix& other);
inline QMatrix toQMatrix(void) const;
#endif
/** \returns a read-only expression of the transformation matrix */
inline const MatrixType& matrix() const { return m_matrix; }
/** \returns a writable expression of the transformation matrix */
inline MatrixType& matrix() { return m_matrix; }
/** \returns a read-only expression of the affine (linear) part of the transformation */
inline const AffinePart affine() const { return m_matrix.template block<Dim,Dim>(0,0); }
/** \returns a writable expression of the affine (linear) part of the transformation */
inline AffinePart affine() { return m_matrix.template block<Dim,Dim>(0,0); }
/** \returns a read-only expression of the translation vector of the transformation */
inline const TranslationPart translation() const { return m_matrix.template block<Dim,1>(0,Dim); }
/** \returns a writable expression of the translation vector of the transformation */
inline TranslationPart translation() { return m_matrix.template block<Dim,1>(0,Dim); }
/** \returns an expression of the product between the transform \c *this and a matrix expression \a other
*
* The right hand side \a other might be either:
* \li a vector of size Dim,
* \li an homogeneous vector of size Dim+1,
* \li a transformation matrix of size Dim+1 x Dim+1.
*/
// note: this function is defined here because some compilers cannot find the respective declaration
template<typename OtherDerived>
const typename ei_transform_product_impl<OtherDerived,_Dim,_Dim+1>::ResultType
operator * (const MatrixBase<OtherDerived> &other) const
{ return ei_transform_product_impl<OtherDerived,Dim,HDim>::run(*this,other.derived()); }
/** Contatenates two transformations */
const typename ProductReturnType<MatrixType,MatrixType>::Type
operator * (const Transform& other) const
{ return m_matrix * other.matrix(); }
/** \sa MatrixBase::setIdentity() */
void setIdentity() { m_matrix.setIdentity(); }
template<typename OtherDerived>
Transform& scale(const MatrixBase<OtherDerived> &other);
template<typename OtherDerived>
Transform& prescale(const MatrixBase<OtherDerived> &other);
template<typename OtherDerived>
Transform& translate(const MatrixBase<OtherDerived> &other);
template<typename OtherDerived>
Transform& pretranslate(const MatrixBase<OtherDerived> &other);
template<typename RotationType>
Transform& rotate(const RotationType& rotation);
template<typename RotationType>
Transform& prerotate(const RotationType& rotation);
Transform& shear(Scalar sx, Scalar sy);
Transform& preshear(Scalar sx, Scalar sy);
AffineMatrixType extractRotation() const;
AffineMatrixType extractRotationNoShear() const;
template<typename PositionDerived, typename OrientationType, typename ScaleDerived>
Transform& fromPositionOrientationScale(const MatrixBase<PositionDerived> &position,
const OrientationType& orientation, const MatrixBase<ScaleDerived> &scale);
/** \sa MatrixBase::inverse() */
const MatrixType inverse() const
{ return m_matrix.inverse(); }
protected:
};
/** \ingroup Geometry */
typedef Transform<float,2> Transform2f;
/** \ingroup Geometry */
typedef Transform<float,3> Transform3f;
/** \ingroup Geometry */
typedef Transform<double,2> Transform2d;
/** \ingroup Geometry */
typedef Transform<double,3> Transform3d;
#ifdef EIGEN_QT_SUPPORT
/** Initialises \c *this from a QMatrix assuming the dimension is 2.
*
* This function is available only if the token EIGEN_QT_SUPPORT is defined.
*/
template<typename Scalar, int Dim>
Transform<Scalar,Dim>::Transform(const QMatrix& other)
{
*this = other;
}
/** Set \c *this from a QMatrix assuming the dimension is 2.
*
* This function is available only if the token EIGEN_QT_SUPPORT is defined.
*/
template<typename Scalar, int Dim>
Transform<Scalar,Dim>& Transform<Scalar,Dim>::operator=(const QMatrix& other)
{
EIGEN_STATIC_ASSERT(Dim==2, you_did_a_programming_error);
m_matrix << other.m11(), other.m21(), other.dx(),
other.m12(), other.m22(), other.dy(),
0, 0, 1;
return *this;
}
/** \returns a QMatrix from \c *this assuming the dimension is 2.
*
* This function is available only if the token EIGEN_QT_SUPPORT is defined.
*/
template<typename Scalar, int Dim>
QMatrix Transform<Scalar,Dim>::toQMatrix(void) const
{
EIGEN_STATIC_ASSERT(Dim==2, you_did_a_programming_error);
return QMatrix(other.coeffRef(0,0), other.coeffRef(1,0),
other.coeffRef(0,1), other.coeffRef(1,1),
other.coeffRef(0,2), other.coeffRef(1,2));
}
#endif
/** Applies on the right the non uniform scale transformation represented
* by the vector \a other to \c *this and returns a reference to \c *this.
* \sa prescale()
*/
template<typename Scalar, int Dim>
template<typename OtherDerived>
Transform<Scalar,Dim>&
Transform<Scalar,Dim>::scale(const MatrixBase<OtherDerived> &other)
{
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim));
affine() = (affine() * other.asDiagonal()).lazy();
return *this;
}
/** Applies on the left the non uniform scale transformation represented
* by the vector \a other to \c *this and returns a reference to \c *this.
* \sa scale()
*/
template<typename Scalar, int Dim>
template<typename OtherDerived>
Transform<Scalar,Dim>&
Transform<Scalar,Dim>::prescale(const MatrixBase<OtherDerived> &other)
{
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim));
m_matrix.template block<Dim,HDim>(0,0) = (other.asDiagonal() * m_matrix.template block<Dim,HDim>(0,0)).lazy();
return *this;
}
/** Applies on the right the translation matrix represented by the vector \a other
* to \c *this and returns a reference to \c *this.
* \sa pretranslate()
*/
template<typename Scalar, int Dim>
template<typename OtherDerived>
Transform<Scalar,Dim>&
Transform<Scalar,Dim>::translate(const MatrixBase<OtherDerived> &other)
{
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim));
translation() += affine() * other;
return *this;
}
/** Applies on the left the translation matrix represented by the vector \a other
* to \c *this and returns a reference to \c *this.
* \sa translate()
*/
template<typename Scalar, int Dim>
template<typename OtherDerived>
Transform<Scalar,Dim>&
Transform<Scalar,Dim>::pretranslate(const MatrixBase<OtherDerived> &other)
{
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim));
translation() += other;
return *this;
}
/** Applies on the right the rotation represented by the rotation \a rotation
* to \c *this and returns a reference to \c *this.
*
* The template parameter \a RotationType is the type of the rotation which
* must be registered by ToRotationMatrix<>.
*
* Natively supported types includes:
* - any scalar (2D),
* - a Dim x Dim matrix expression,
* - a Quaternion (3D),
* - a AngleAxis (3D)
*
* This mechanism is easily extendable to support user types such as Euler angles,
* or a pair of Quaternion for 4D rotations.
*
* \sa rotate(Scalar), class Quaternion, class AngleAxis, class ToRotationMatrix, prerotate(RotationType)
*/
template<typename Scalar, int Dim>
template<typename RotationType>
Transform<Scalar,Dim>&
Transform<Scalar,Dim>::rotate(const RotationType& rotation)
{
affine() *= ToRotationMatrix<Scalar,Dim,RotationType>::convert(rotation);
return *this;
}
/** Applies on the left the rotation represented by the rotation \a rotation
* to \c *this and returns a reference to \c *this.
*
* See rotate() for further details.
*
* \sa rotate()
*/
template<typename Scalar, int Dim>
template<typename RotationType>
Transform<Scalar,Dim>&
Transform<Scalar,Dim>::prerotate(const RotationType& rotation)
{
m_matrix.template block<Dim,HDim>(0,0) = ToRotationMatrix<Scalar,Dim,RotationType>::convert(rotation)
* m_matrix.template block<Dim,HDim>(0,0);
return *this;
}
/** Applies on the right the shear transformation represented
* by the vector \a other to \c *this and returns a reference to \c *this.
* \warning 2D only.
* \sa preshear()
*/
template<typename Scalar, int Dim>
Transform<Scalar,Dim>&
Transform<Scalar,Dim>::shear(Scalar sx, Scalar sy)
{
EIGEN_STATIC_ASSERT(int(Dim)==2, you_did_a_programming_error);
VectorType tmp = affine().col(0)*sy + affine().col(1);
affine() << affine().col(0) + affine().col(1)*sx, tmp;
return *this;
}
/** Applies on the left the shear transformation represented
* by the vector \a other to \c *this and returns a reference to \c *this.
* \warning 2D only.
* \sa shear()
*/
template<typename Scalar, int Dim>
Transform<Scalar,Dim>&
Transform<Scalar,Dim>::preshear(Scalar sx, Scalar sy)
{
EIGEN_STATIC_ASSERT(int(Dim)==2, you_did_a_programming_error);
m_matrix.template block<Dim,HDim>(0,0) = AffineMatrixType(1, sx, sy, 1) * m_matrix.template block<Dim,HDim>(0,0);
return *this;
}
/** \returns the rotation part of the transformation using a QR decomposition.
* \sa extractRotationNoShear(), class QR
*/
template<typename Scalar, int Dim>
typename Transform<Scalar,Dim>::AffineMatrixType
Transform<Scalar,Dim>::extractRotation() const
{
return affine().qr().matrixQ();
}
/** \returns the rotation part of the transformation assuming no shear in
* the affine part.
* \sa extractRotation()
*/
template<typename Scalar, int Dim>
typename Transform<Scalar,Dim>::AffineMatrixType
Transform<Scalar,Dim>::extractRotationNoShear() const
{
return affine().cwise().abs2()
.verticalRedux(ei_scalar_sum_op<Scalar>()).cwise().sqrt();
}
/** Convenient method to set \c *this from a position, orientation and scale
* of a 3D object.
*/
template<typename Scalar, int Dim>
template<typename PositionDerived, typename OrientationType, typename ScaleDerived>
Transform<Scalar,Dim>&
Transform<Scalar,Dim>::fromPositionOrientationScale(const MatrixBase<PositionDerived> &position,
const OrientationType& orientation, const MatrixBase<ScaleDerived> &scale)
{
affine() = ToRotationMatrix<Scalar,Dim,OrientationType>::convert(orientation);
translation() = position;
m_matrix(Dim,Dim) = 1.;
m_matrix.template block<1,Dim>(Dim,0).setZero();
affine() *= scale.asDiagonal();
return *this;
}
/***********************************
*** Specializations of operator* ***
***********************************/
template<typename Other, int Dim, int HDim>
struct ei_transform_product_impl<Other,Dim,HDim, HDim,HDim>
{
typedef Transform<typename Other::Scalar,Dim> TransformType;
typedef typename TransformType::MatrixType MatrixType;
typedef typename ProductReturnType<MatrixType,Other>::Type ResultType;
static ResultType run(const TransformType& tr, const Other& other)
{ return tr.matrix() * other; }
};
template<typename Other, int Dim, int HDim>
struct ei_transform_product_impl<Other,Dim,HDim, HDim,1>
{
typedef Transform<typename Other::Scalar,Dim> TransformType;
typedef typename TransformType::MatrixType MatrixType;
typedef typename ProductReturnType<MatrixType,Other>::Type ResultType;
static ResultType run(const TransformType& tr, const Other& other)
{ return tr.matrix() * other; }
};
template<typename Other, int Dim, int HDim>
struct ei_transform_product_impl<Other,Dim,HDim, Dim,1>
{
typedef typename Other::Scalar Scalar;
typedef Transform<Scalar,Dim> TransformType;
typedef typename TransformType::AffinePart MatrixType;
typedef const CwiseUnaryOp<
ei_scalar_multiple_op<Scalar>,
NestByValue<CwiseBinaryOp<
ei_scalar_sum_op<Scalar>,
NestByValue<typename ProductReturnType<NestByValue<MatrixType>,Other>::Type >,
NestByValue<typename TransformType::TranslationPart> > >
> ResultType;
// FIXME should we offer an optimized version when the last row is known to be 0,0...,0,1 ?
static ResultType run(const TransformType& tr, const Other& other)
{ return ((tr.affine().nestByValue() * other).nestByValue() + tr.translation().nestByValue()).nestByValue()
* (Scalar(1) / ( (tr.matrix().template block<1,Dim>(Dim,0) * other).coeff(0) + tr.matrix().coeff(Dim,Dim))); }
};
#endif // EIGEN_TRANSFORM_H