mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-05-04 09:44:06 +08:00
727 lines
27 KiB
C++
727 lines
27 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
// Copyright (C) 2010 Konstantinos Margaritis <markos@freevec.org>
|
|
// Heavily based on Gael's SSE version.
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#ifndef EIGEN_PACKET_MATH_NEON_H
|
|
#define EIGEN_PACKET_MATH_NEON_H
|
|
|
|
namespace Eigen {
|
|
|
|
namespace internal {
|
|
|
|
#ifndef EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD
|
|
#define EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD 8
|
|
#endif
|
|
|
|
#ifndef EIGEN_HAS_SINGLE_INSTRUCTION_MADD
|
|
#define EIGEN_HAS_SINGLE_INSTRUCTION_MADD
|
|
#endif
|
|
|
|
#ifndef EIGEN_HAS_SINGLE_INSTRUCTION_CJMADD
|
|
#define EIGEN_HAS_SINGLE_INSTRUCTION_CJMADD
|
|
#endif
|
|
|
|
#ifndef EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS
|
|
#if EIGEN_ARCH_ARM64
|
|
#define EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS 32
|
|
#else
|
|
#define EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS 16
|
|
#endif
|
|
#endif
|
|
|
|
typedef float32x2_t Packet2f;
|
|
typedef float32x4_t Packet4f;
|
|
typedef int32x4_t Packet4i;
|
|
typedef int32x2_t Packet2i;
|
|
typedef uint32x4_t Packet4ui;
|
|
|
|
#define _EIGEN_DECLARE_CONST_Packet4f(NAME,X) \
|
|
const Packet4f p4f_##NAME = pset1<Packet4f>(X)
|
|
|
|
#define _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(NAME,X) \
|
|
const Packet4f p4f_##NAME = vreinterpretq_f32_u32(pset1<int32_t>(X))
|
|
|
|
#define _EIGEN_DECLARE_CONST_Packet4i(NAME,X) \
|
|
const Packet4i p4i_##NAME = pset1<Packet4i>(X)
|
|
|
|
// arm64 does have the pld instruction. If available, let's trust the __builtin_prefetch built-in function
|
|
// which available on LLVM and GCC (at least)
|
|
#if EIGEN_HAS_BUILTIN(__builtin_prefetch) || EIGEN_COMP_GNUC
|
|
#define EIGEN_ARM_PREFETCH(ADDR) __builtin_prefetch(ADDR);
|
|
#elif defined __pld
|
|
#define EIGEN_ARM_PREFETCH(ADDR) __pld(ADDR)
|
|
#elif !EIGEN_ARCH_ARM64
|
|
#define EIGEN_ARM_PREFETCH(ADDR) __asm__ __volatile__ ( " pld [%[addr]]\n" :: [addr] "r" (ADDR) : "cc" );
|
|
#else
|
|
// by default no explicit prefetching
|
|
#define EIGEN_ARM_PREFETCH(ADDR)
|
|
#endif
|
|
|
|
template<> struct packet_traits<float> : default_packet_traits
|
|
{
|
|
typedef Packet4f type;
|
|
typedef Packet4f half; // Packet2f intrinsics not implemented yet
|
|
enum {
|
|
Vectorizable = 1,
|
|
AlignedOnScalar = 1,
|
|
size = 4,
|
|
HasHalfPacket=0, // Packet2f intrinsics not implemented yet
|
|
|
|
HasDiv = 1,
|
|
// FIXME check the Has*
|
|
HasSin = 0,
|
|
HasCos = 0,
|
|
HasLog = 0,
|
|
HasExp = 1,
|
|
HasSqrt = 0
|
|
};
|
|
};
|
|
template<> struct packet_traits<int32_t> : default_packet_traits
|
|
{
|
|
typedef Packet4i type;
|
|
typedef Packet4i half; // Packet2i intrinsics not implemented yet
|
|
enum {
|
|
Vectorizable = 1,
|
|
AlignedOnScalar = 1,
|
|
size=4,
|
|
HasHalfPacket=0 // Packet2i intrinsics not implemented yet
|
|
// FIXME check the Has*
|
|
};
|
|
};
|
|
|
|
#if EIGEN_GNUC_AT_MOST(4,4) && !EIGEN_COMP_LLVM
|
|
// workaround gcc 4.2, 4.3 and 4.4 compilatin issue
|
|
EIGEN_STRONG_INLINE float32x4_t vld1q_f32(const float* x) { return ::vld1q_f32((const float32_t*)x); }
|
|
EIGEN_STRONG_INLINE float32x2_t vld1_f32 (const float* x) { return ::vld1_f32 ((const float32_t*)x); }
|
|
EIGEN_STRONG_INLINE float32x2_t vld1_dup_f32 (const float* x) { return ::vld1_dup_f32 ((const float32_t*)x); }
|
|
EIGEN_STRONG_INLINE void vst1q_f32(float* to, float32x4_t from) { ::vst1q_f32((float32_t*)to,from); }
|
|
EIGEN_STRONG_INLINE void vst1_f32 (float* to, float32x2_t from) { ::vst1_f32 ((float32_t*)to,from); }
|
|
#endif
|
|
|
|
template<> struct unpacket_traits<Packet4f> { typedef float type; enum {size=4, alignment=Aligned16}; typedef Packet4f half; };
|
|
template<> struct unpacket_traits<Packet4i> { typedef int32_t type; enum {size=4, alignment=Aligned16}; typedef Packet4i half; };
|
|
|
|
template<> EIGEN_STRONG_INLINE Packet4f pset1<Packet4f>(const float& from) { return vdupq_n_f32(from); }
|
|
template<> EIGEN_STRONG_INLINE Packet4i pset1<Packet4i>(const int32_t& from) { return vdupq_n_s32(from); }
|
|
|
|
template<> EIGEN_STRONG_INLINE Packet4f plset<Packet4f>(const float& a)
|
|
{
|
|
const float32_t f[] = {0, 1, 2, 3};
|
|
Packet4f countdown = vld1q_f32(f);
|
|
return vaddq_f32(pset1<Packet4f>(a), countdown);
|
|
}
|
|
template<> EIGEN_STRONG_INLINE Packet4i plset<Packet4i>(const int32_t& a)
|
|
{
|
|
const int32_t i[] = {0, 1, 2, 3};
|
|
Packet4i countdown = vld1q_s32(i);
|
|
return vaddq_s32(pset1<Packet4i>(a), countdown);
|
|
}
|
|
|
|
template<> EIGEN_STRONG_INLINE Packet4f padd<Packet4f>(const Packet4f& a, const Packet4f& b) { return vaddq_f32(a,b); }
|
|
template<> EIGEN_STRONG_INLINE Packet4i padd<Packet4i>(const Packet4i& a, const Packet4i& b) { return vaddq_s32(a,b); }
|
|
|
|
template<> EIGEN_STRONG_INLINE Packet4f psub<Packet4f>(const Packet4f& a, const Packet4f& b) { return vsubq_f32(a,b); }
|
|
template<> EIGEN_STRONG_INLINE Packet4i psub<Packet4i>(const Packet4i& a, const Packet4i& b) { return vsubq_s32(a,b); }
|
|
|
|
template<> EIGEN_STRONG_INLINE Packet4f pnegate(const Packet4f& a) { return vnegq_f32(a); }
|
|
template<> EIGEN_STRONG_INLINE Packet4i pnegate(const Packet4i& a) { return vnegq_s32(a); }
|
|
|
|
template<> EIGEN_STRONG_INLINE Packet4f pconj(const Packet4f& a) { return a; }
|
|
template<> EIGEN_STRONG_INLINE Packet4i pconj(const Packet4i& a) { return a; }
|
|
|
|
template<> EIGEN_STRONG_INLINE Packet4f pmul<Packet4f>(const Packet4f& a, const Packet4f& b) { return vmulq_f32(a,b); }
|
|
template<> EIGEN_STRONG_INLINE Packet4i pmul<Packet4i>(const Packet4i& a, const Packet4i& b) { return vmulq_s32(a,b); }
|
|
|
|
template<> EIGEN_STRONG_INLINE Packet4f pdiv<Packet4f>(const Packet4f& a, const Packet4f& b)
|
|
{
|
|
#if EIGEN_ARCH_ARM64
|
|
return vdivq_f32(a,b);
|
|
#else
|
|
Packet4f inv, restep, div;
|
|
|
|
// NEON does not offer a divide instruction, we have to do a reciprocal approximation
|
|
// However NEON in contrast to other SIMD engines (AltiVec/SSE), offers
|
|
// a reciprocal estimate AND a reciprocal step -which saves a few instructions
|
|
// vrecpeq_f32() returns an estimate to 1/b, which we will finetune with
|
|
// Newton-Raphson and vrecpsq_f32()
|
|
inv = vrecpeq_f32(b);
|
|
|
|
// This returns a differential, by which we will have to multiply inv to get a better
|
|
// approximation of 1/b.
|
|
restep = vrecpsq_f32(b, inv);
|
|
inv = vmulq_f32(restep, inv);
|
|
|
|
// Finally, multiply a by 1/b and get the wanted result of the division.
|
|
div = vmulq_f32(a, inv);
|
|
|
|
return div;
|
|
#endif
|
|
}
|
|
|
|
template<> EIGEN_STRONG_INLINE Packet4i pdiv<Packet4i>(const Packet4i& /*a*/, const Packet4i& /*b*/)
|
|
{ eigen_assert(false && "packet integer division are not supported by NEON");
|
|
return pset1<Packet4i>(0);
|
|
}
|
|
|
|
// Clang/ARM wrongly advertises __ARM_FEATURE_FMA even when it's not available,
|
|
// then implements a slow software scalar fallback calling fmaf()!
|
|
// Filed LLVM bug:
|
|
// https://llvm.org/bugs/show_bug.cgi?id=27216
|
|
#if (defined __ARM_FEATURE_FMA) && !(EIGEN_COMP_CLANG && EIGEN_ARCH_ARM)
|
|
// See bug 936.
|
|
// FMA is available on VFPv4 i.e. when compiling with -mfpu=neon-vfpv4.
|
|
// FMA is a true fused multiply-add i.e. only 1 rounding at the end, no intermediate rounding.
|
|
// MLA is not fused i.e. does 2 roundings.
|
|
// In addition to giving better accuracy, FMA also gives better performance here on a Krait (Nexus 4):
|
|
// MLA: 10 GFlop/s ; FMA: 12 GFlops/s.
|
|
template<> EIGEN_STRONG_INLINE Packet4f pmadd(const Packet4f& a, const Packet4f& b, const Packet4f& c) { return vfmaq_f32(c,a,b); }
|
|
#else
|
|
template<> EIGEN_STRONG_INLINE Packet4f pmadd(const Packet4f& a, const Packet4f& b, const Packet4f& c) {
|
|
#if EIGEN_COMP_CLANG && EIGEN_ARCH_ARM
|
|
// Clang/ARM will replace VMLA by VMUL+VADD at least for some values of -mcpu,
|
|
// at least -mcpu=cortex-a8 and -mcpu=cortex-a7. Since the former is the default on
|
|
// -march=armv7-a, that is a very common case.
|
|
// See e.g. this thread:
|
|
// http://lists.llvm.org/pipermail/llvm-dev/2013-December/068806.html
|
|
// Filed LLVM bug:
|
|
// https://llvm.org/bugs/show_bug.cgi?id=27219
|
|
Packet4f r = c;
|
|
asm volatile(
|
|
"vmla.f32 %q[r], %q[a], %q[b]"
|
|
: [r] "+w" (r)
|
|
: [a] "w" (a),
|
|
[b] "w" (b)
|
|
: );
|
|
return r;
|
|
#else
|
|
return vmlaq_f32(c,a,b);
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
// No FMA instruction for int, so use MLA unconditionally.
|
|
template<> EIGEN_STRONG_INLINE Packet4i pmadd(const Packet4i& a, const Packet4i& b, const Packet4i& c) { return vmlaq_s32(c,a,b); }
|
|
|
|
template<> EIGEN_STRONG_INLINE Packet4f pmin<Packet4f>(const Packet4f& a, const Packet4f& b) { return vminq_f32(a,b); }
|
|
template<> EIGEN_STRONG_INLINE Packet4i pmin<Packet4i>(const Packet4i& a, const Packet4i& b) { return vminq_s32(a,b); }
|
|
|
|
template<> EIGEN_STRONG_INLINE Packet4f pmax<Packet4f>(const Packet4f& a, const Packet4f& b) { return vmaxq_f32(a,b); }
|
|
template<> EIGEN_STRONG_INLINE Packet4i pmax<Packet4i>(const Packet4i& a, const Packet4i& b) { return vmaxq_s32(a,b); }
|
|
|
|
// Logical Operations are not supported for float, so we have to reinterpret casts using NEON intrinsics
|
|
template<> EIGEN_STRONG_INLINE Packet4f pand<Packet4f>(const Packet4f& a, const Packet4f& b)
|
|
{
|
|
return vreinterpretq_f32_u32(vandq_u32(vreinterpretq_u32_f32(a),vreinterpretq_u32_f32(b)));
|
|
}
|
|
template<> EIGEN_STRONG_INLINE Packet4i pand<Packet4i>(const Packet4i& a, const Packet4i& b) { return vandq_s32(a,b); }
|
|
|
|
template<> EIGEN_STRONG_INLINE Packet4f por<Packet4f>(const Packet4f& a, const Packet4f& b)
|
|
{
|
|
return vreinterpretq_f32_u32(vorrq_u32(vreinterpretq_u32_f32(a),vreinterpretq_u32_f32(b)));
|
|
}
|
|
template<> EIGEN_STRONG_INLINE Packet4i por<Packet4i>(const Packet4i& a, const Packet4i& b) { return vorrq_s32(a,b); }
|
|
|
|
template<> EIGEN_STRONG_INLINE Packet4f pxor<Packet4f>(const Packet4f& a, const Packet4f& b)
|
|
{
|
|
return vreinterpretq_f32_u32(veorq_u32(vreinterpretq_u32_f32(a),vreinterpretq_u32_f32(b)));
|
|
}
|
|
template<> EIGEN_STRONG_INLINE Packet4i pxor<Packet4i>(const Packet4i& a, const Packet4i& b) { return veorq_s32(a,b); }
|
|
|
|
template<> EIGEN_STRONG_INLINE Packet4f pandnot<Packet4f>(const Packet4f& a, const Packet4f& b)
|
|
{
|
|
return vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(a),vreinterpretq_u32_f32(b)));
|
|
}
|
|
template<> EIGEN_STRONG_INLINE Packet4i pandnot<Packet4i>(const Packet4i& a, const Packet4i& b) { return vbicq_s32(a,b); }
|
|
|
|
template<> EIGEN_STRONG_INLINE Packet4f pload<Packet4f>(const float* from) { EIGEN_DEBUG_ALIGNED_LOAD return vld1q_f32(from); }
|
|
template<> EIGEN_STRONG_INLINE Packet4i pload<Packet4i>(const int32_t* from) { EIGEN_DEBUG_ALIGNED_LOAD return vld1q_s32(from); }
|
|
|
|
template<> EIGEN_STRONG_INLINE Packet4f ploadu<Packet4f>(const float* from) { EIGEN_DEBUG_UNALIGNED_LOAD return vld1q_f32(from); }
|
|
template<> EIGEN_STRONG_INLINE Packet4i ploadu<Packet4i>(const int32_t* from) { EIGEN_DEBUG_UNALIGNED_LOAD return vld1q_s32(from); }
|
|
|
|
template<> EIGEN_STRONG_INLINE Packet4f ploaddup<Packet4f>(const float* from)
|
|
{
|
|
float32x2_t lo, hi;
|
|
lo = vld1_dup_f32(from);
|
|
hi = vld1_dup_f32(from+1);
|
|
return vcombine_f32(lo, hi);
|
|
}
|
|
template<> EIGEN_STRONG_INLINE Packet4i ploaddup<Packet4i>(const int32_t* from)
|
|
{
|
|
int32x2_t lo, hi;
|
|
lo = vld1_dup_s32(from);
|
|
hi = vld1_dup_s32(from+1);
|
|
return vcombine_s32(lo, hi);
|
|
}
|
|
|
|
template<> EIGEN_STRONG_INLINE void pstore<float> (float* to, const Packet4f& from) { EIGEN_DEBUG_ALIGNED_STORE vst1q_f32(to, from); }
|
|
template<> EIGEN_STRONG_INLINE void pstore<int32_t>(int32_t* to, const Packet4i& from) { EIGEN_DEBUG_ALIGNED_STORE vst1q_s32(to, from); }
|
|
|
|
template<> EIGEN_STRONG_INLINE void pstoreu<float> (float* to, const Packet4f& from) { EIGEN_DEBUG_UNALIGNED_STORE vst1q_f32(to, from); }
|
|
template<> EIGEN_STRONG_INLINE void pstoreu<int32_t>(int32_t* to, const Packet4i& from) { EIGEN_DEBUG_UNALIGNED_STORE vst1q_s32(to, from); }
|
|
|
|
template<> EIGEN_DEVICE_FUNC inline Packet4f pgather<float, Packet4f>(const float* from, Index stride)
|
|
{
|
|
Packet4f res = pset1<Packet4f>(0.f);
|
|
res = vsetq_lane_f32(from[0*stride], res, 0);
|
|
res = vsetq_lane_f32(from[1*stride], res, 1);
|
|
res = vsetq_lane_f32(from[2*stride], res, 2);
|
|
res = vsetq_lane_f32(from[3*stride], res, 3);
|
|
return res;
|
|
}
|
|
template<> EIGEN_DEVICE_FUNC inline Packet4i pgather<int32_t, Packet4i>(const int32_t* from, Index stride)
|
|
{
|
|
Packet4i res = pset1<Packet4i>(0);
|
|
res = vsetq_lane_s32(from[0*stride], res, 0);
|
|
res = vsetq_lane_s32(from[1*stride], res, 1);
|
|
res = vsetq_lane_s32(from[2*stride], res, 2);
|
|
res = vsetq_lane_s32(from[3*stride], res, 3);
|
|
return res;
|
|
}
|
|
|
|
template<> EIGEN_DEVICE_FUNC inline void pscatter<float, Packet4f>(float* to, const Packet4f& from, Index stride)
|
|
{
|
|
to[stride*0] = vgetq_lane_f32(from, 0);
|
|
to[stride*1] = vgetq_lane_f32(from, 1);
|
|
to[stride*2] = vgetq_lane_f32(from, 2);
|
|
to[stride*3] = vgetq_lane_f32(from, 3);
|
|
}
|
|
template<> EIGEN_DEVICE_FUNC inline void pscatter<int32_t, Packet4i>(int32_t* to, const Packet4i& from, Index stride)
|
|
{
|
|
to[stride*0] = vgetq_lane_s32(from, 0);
|
|
to[stride*1] = vgetq_lane_s32(from, 1);
|
|
to[stride*2] = vgetq_lane_s32(from, 2);
|
|
to[stride*3] = vgetq_lane_s32(from, 3);
|
|
}
|
|
|
|
template<> EIGEN_STRONG_INLINE void prefetch<float> (const float* addr) { EIGEN_ARM_PREFETCH(addr); }
|
|
template<> EIGEN_STRONG_INLINE void prefetch<int32_t>(const int32_t* addr) { EIGEN_ARM_PREFETCH(addr); }
|
|
|
|
// FIXME only store the 2 first elements ?
|
|
template<> EIGEN_STRONG_INLINE float pfirst<Packet4f>(const Packet4f& a) { float EIGEN_ALIGN16 x[4]; vst1q_f32(x, a); return x[0]; }
|
|
template<> EIGEN_STRONG_INLINE int32_t pfirst<Packet4i>(const Packet4i& a) { int32_t EIGEN_ALIGN16 x[4]; vst1q_s32(x, a); return x[0]; }
|
|
|
|
template<> EIGEN_STRONG_INLINE Packet4f preverse(const Packet4f& a) {
|
|
float32x2_t a_lo, a_hi;
|
|
Packet4f a_r64;
|
|
|
|
a_r64 = vrev64q_f32(a);
|
|
a_lo = vget_low_f32(a_r64);
|
|
a_hi = vget_high_f32(a_r64);
|
|
return vcombine_f32(a_hi, a_lo);
|
|
}
|
|
template<> EIGEN_STRONG_INLINE Packet4i preverse(const Packet4i& a) {
|
|
int32x2_t a_lo, a_hi;
|
|
Packet4i a_r64;
|
|
|
|
a_r64 = vrev64q_s32(a);
|
|
a_lo = vget_low_s32(a_r64);
|
|
a_hi = vget_high_s32(a_r64);
|
|
return vcombine_s32(a_hi, a_lo);
|
|
}
|
|
|
|
template<> EIGEN_STRONG_INLINE Packet4f pabs(const Packet4f& a) { return vabsq_f32(a); }
|
|
template<> EIGEN_STRONG_INLINE Packet4i pabs(const Packet4i& a) { return vabsq_s32(a); }
|
|
|
|
template<> EIGEN_STRONG_INLINE float predux<Packet4f>(const Packet4f& a)
|
|
{
|
|
float32x2_t a_lo, a_hi, sum;
|
|
|
|
a_lo = vget_low_f32(a);
|
|
a_hi = vget_high_f32(a);
|
|
sum = vpadd_f32(a_lo, a_hi);
|
|
sum = vpadd_f32(sum, sum);
|
|
return vget_lane_f32(sum, 0);
|
|
}
|
|
|
|
template<> EIGEN_STRONG_INLINE Packet4f preduxp<Packet4f>(const Packet4f* vecs)
|
|
{
|
|
float32x4x2_t vtrn1, vtrn2, res1, res2;
|
|
Packet4f sum1, sum2, sum;
|
|
|
|
// NEON zip performs interleaving of the supplied vectors.
|
|
// We perform two interleaves in a row to acquire the transposed vector
|
|
vtrn1 = vzipq_f32(vecs[0], vecs[2]);
|
|
vtrn2 = vzipq_f32(vecs[1], vecs[3]);
|
|
res1 = vzipq_f32(vtrn1.val[0], vtrn2.val[0]);
|
|
res2 = vzipq_f32(vtrn1.val[1], vtrn2.val[1]);
|
|
|
|
// Do the addition of the resulting vectors
|
|
sum1 = vaddq_f32(res1.val[0], res1.val[1]);
|
|
sum2 = vaddq_f32(res2.val[0], res2.val[1]);
|
|
sum = vaddq_f32(sum1, sum2);
|
|
|
|
return sum;
|
|
}
|
|
|
|
template<> EIGEN_STRONG_INLINE int32_t predux<Packet4i>(const Packet4i& a)
|
|
{
|
|
int32x2_t a_lo, a_hi, sum;
|
|
|
|
a_lo = vget_low_s32(a);
|
|
a_hi = vget_high_s32(a);
|
|
sum = vpadd_s32(a_lo, a_hi);
|
|
sum = vpadd_s32(sum, sum);
|
|
return vget_lane_s32(sum, 0);
|
|
}
|
|
|
|
template<> EIGEN_STRONG_INLINE Packet4i preduxp<Packet4i>(const Packet4i* vecs)
|
|
{
|
|
int32x4x2_t vtrn1, vtrn2, res1, res2;
|
|
Packet4i sum1, sum2, sum;
|
|
|
|
// NEON zip performs interleaving of the supplied vectors.
|
|
// We perform two interleaves in a row to acquire the transposed vector
|
|
vtrn1 = vzipq_s32(vecs[0], vecs[2]);
|
|
vtrn2 = vzipq_s32(vecs[1], vecs[3]);
|
|
res1 = vzipq_s32(vtrn1.val[0], vtrn2.val[0]);
|
|
res2 = vzipq_s32(vtrn1.val[1], vtrn2.val[1]);
|
|
|
|
// Do the addition of the resulting vectors
|
|
sum1 = vaddq_s32(res1.val[0], res1.val[1]);
|
|
sum2 = vaddq_s32(res2.val[0], res2.val[1]);
|
|
sum = vaddq_s32(sum1, sum2);
|
|
|
|
return sum;
|
|
}
|
|
|
|
// Other reduction functions:
|
|
// mul
|
|
template<> EIGEN_STRONG_INLINE float predux_mul<Packet4f>(const Packet4f& a)
|
|
{
|
|
float32x2_t a_lo, a_hi, prod;
|
|
|
|
// Get a_lo = |a1|a2| and a_hi = |a3|a4|
|
|
a_lo = vget_low_f32(a);
|
|
a_hi = vget_high_f32(a);
|
|
// Get the product of a_lo * a_hi -> |a1*a3|a2*a4|
|
|
prod = vmul_f32(a_lo, a_hi);
|
|
// Multiply prod with its swapped value |a2*a4|a1*a3|
|
|
prod = vmul_f32(prod, vrev64_f32(prod));
|
|
|
|
return vget_lane_f32(prod, 0);
|
|
}
|
|
template<> EIGEN_STRONG_INLINE int32_t predux_mul<Packet4i>(const Packet4i& a)
|
|
{
|
|
int32x2_t a_lo, a_hi, prod;
|
|
|
|
// Get a_lo = |a1|a2| and a_hi = |a3|a4|
|
|
a_lo = vget_low_s32(a);
|
|
a_hi = vget_high_s32(a);
|
|
// Get the product of a_lo * a_hi -> |a1*a3|a2*a4|
|
|
prod = vmul_s32(a_lo, a_hi);
|
|
// Multiply prod with its swapped value |a2*a4|a1*a3|
|
|
prod = vmul_s32(prod, vrev64_s32(prod));
|
|
|
|
return vget_lane_s32(prod, 0);
|
|
}
|
|
|
|
// min
|
|
template<> EIGEN_STRONG_INLINE float predux_min<Packet4f>(const Packet4f& a)
|
|
{
|
|
float32x2_t a_lo, a_hi, min;
|
|
|
|
a_lo = vget_low_f32(a);
|
|
a_hi = vget_high_f32(a);
|
|
min = vpmin_f32(a_lo, a_hi);
|
|
min = vpmin_f32(min, min);
|
|
|
|
return vget_lane_f32(min, 0);
|
|
}
|
|
|
|
template<> EIGEN_STRONG_INLINE int32_t predux_min<Packet4i>(const Packet4i& a)
|
|
{
|
|
int32x2_t a_lo, a_hi, min;
|
|
|
|
a_lo = vget_low_s32(a);
|
|
a_hi = vget_high_s32(a);
|
|
min = vpmin_s32(a_lo, a_hi);
|
|
min = vpmin_s32(min, min);
|
|
|
|
return vget_lane_s32(min, 0);
|
|
}
|
|
|
|
// max
|
|
template<> EIGEN_STRONG_INLINE float predux_max<Packet4f>(const Packet4f& a)
|
|
{
|
|
float32x2_t a_lo, a_hi, max;
|
|
|
|
a_lo = vget_low_f32(a);
|
|
a_hi = vget_high_f32(a);
|
|
max = vpmax_f32(a_lo, a_hi);
|
|
max = vpmax_f32(max, max);
|
|
|
|
return vget_lane_f32(max, 0);
|
|
}
|
|
|
|
template<> EIGEN_STRONG_INLINE int32_t predux_max<Packet4i>(const Packet4i& a)
|
|
{
|
|
int32x2_t a_lo, a_hi, max;
|
|
|
|
a_lo = vget_low_s32(a);
|
|
a_hi = vget_high_s32(a);
|
|
max = vpmax_s32(a_lo, a_hi);
|
|
max = vpmax_s32(max, max);
|
|
|
|
return vget_lane_s32(max, 0);
|
|
}
|
|
|
|
// this PALIGN_NEON business is to work around a bug in LLVM Clang 3.0 causing incorrect compilation errors,
|
|
// see bug 347 and this LLVM bug: http://llvm.org/bugs/show_bug.cgi?id=11074
|
|
#define PALIGN_NEON(Offset,Type,Command) \
|
|
template<>\
|
|
struct palign_impl<Offset,Type>\
|
|
{\
|
|
EIGEN_STRONG_INLINE static void run(Type& first, const Type& second)\
|
|
{\
|
|
if (Offset!=0)\
|
|
first = Command(first, second, Offset);\
|
|
}\
|
|
};\
|
|
|
|
PALIGN_NEON(0,Packet4f,vextq_f32)
|
|
PALIGN_NEON(1,Packet4f,vextq_f32)
|
|
PALIGN_NEON(2,Packet4f,vextq_f32)
|
|
PALIGN_NEON(3,Packet4f,vextq_f32)
|
|
PALIGN_NEON(0,Packet4i,vextq_s32)
|
|
PALIGN_NEON(1,Packet4i,vextq_s32)
|
|
PALIGN_NEON(2,Packet4i,vextq_s32)
|
|
PALIGN_NEON(3,Packet4i,vextq_s32)
|
|
|
|
#undef PALIGN_NEON
|
|
|
|
EIGEN_DEVICE_FUNC inline void
|
|
ptranspose(PacketBlock<Packet4f,4>& kernel) {
|
|
float32x4x2_t tmp1 = vzipq_f32(kernel.packet[0], kernel.packet[1]);
|
|
float32x4x2_t tmp2 = vzipq_f32(kernel.packet[2], kernel.packet[3]);
|
|
|
|
kernel.packet[0] = vcombine_f32(vget_low_f32(tmp1.val[0]), vget_low_f32(tmp2.val[0]));
|
|
kernel.packet[1] = vcombine_f32(vget_high_f32(tmp1.val[0]), vget_high_f32(tmp2.val[0]));
|
|
kernel.packet[2] = vcombine_f32(vget_low_f32(tmp1.val[1]), vget_low_f32(tmp2.val[1]));
|
|
kernel.packet[3] = vcombine_f32(vget_high_f32(tmp1.val[1]), vget_high_f32(tmp2.val[1]));
|
|
}
|
|
|
|
EIGEN_DEVICE_FUNC inline void
|
|
ptranspose(PacketBlock<Packet4i,4>& kernel) {
|
|
int32x4x2_t tmp1 = vzipq_s32(kernel.packet[0], kernel.packet[1]);
|
|
int32x4x2_t tmp2 = vzipq_s32(kernel.packet[2], kernel.packet[3]);
|
|
kernel.packet[0] = vcombine_s32(vget_low_s32(tmp1.val[0]), vget_low_s32(tmp2.val[0]));
|
|
kernel.packet[1] = vcombine_s32(vget_high_s32(tmp1.val[0]), vget_high_s32(tmp2.val[0]));
|
|
kernel.packet[2] = vcombine_s32(vget_low_s32(tmp1.val[1]), vget_low_s32(tmp2.val[1]));
|
|
kernel.packet[3] = vcombine_s32(vget_high_s32(tmp1.val[1]), vget_high_s32(tmp2.val[1]));
|
|
}
|
|
|
|
//---------- double ----------
|
|
|
|
// Clang 3.5 in the iOS toolchain has an ICE triggered by NEON intrisics for double.
|
|
// Confirmed at least with __apple_build_version__ = 6000054.
|
|
#ifdef __apple_build_version__
|
|
// Let's hope that by the time __apple_build_version__ hits the 601* range, the bug will be fixed.
|
|
// https://gist.github.com/yamaya/2924292 suggests that the 3 first digits are only updated with
|
|
// major toolchain updates.
|
|
#define EIGEN_APPLE_DOUBLE_NEON_BUG (__apple_build_version__ < 6010000)
|
|
#else
|
|
#define EIGEN_APPLE_DOUBLE_NEON_BUG 0
|
|
#endif
|
|
|
|
#if EIGEN_ARCH_ARM64 && !EIGEN_APPLE_DOUBLE_NEON_BUG
|
|
|
|
// Bug 907: workaround missing declarations of the following two functions in the ADK
|
|
// Defining these functions as templates ensures that if these intrinsics are
|
|
// already defined in arm_neon.h, then our workaround doesn't cause a conflict
|
|
// and has lower priority in overload resolution.
|
|
template <typename T>
|
|
uint64x2_t vreinterpretq_u64_f64(T a)
|
|
{
|
|
return (uint64x2_t) a;
|
|
}
|
|
|
|
template <typename T>
|
|
float64x2_t vreinterpretq_f64_u64(T a)
|
|
{
|
|
return (float64x2_t) a;
|
|
}
|
|
|
|
typedef float64x2_t Packet2d;
|
|
typedef float64x1_t Packet1d;
|
|
|
|
template<> struct packet_traits<double> : default_packet_traits
|
|
{
|
|
typedef Packet2d type;
|
|
typedef Packet2d half;
|
|
enum {
|
|
Vectorizable = 1,
|
|
AlignedOnScalar = 1,
|
|
size = 2,
|
|
HasHalfPacket=0,
|
|
|
|
HasDiv = 1,
|
|
// FIXME check the Has*
|
|
HasSin = 0,
|
|
HasCos = 0,
|
|
HasLog = 0,
|
|
HasExp = 0,
|
|
HasSqrt = 0
|
|
};
|
|
};
|
|
|
|
template<> struct unpacket_traits<Packet2d> { typedef double type; enum {size=2, alignment=Aligned16}; typedef Packet2d half; };
|
|
|
|
template<> EIGEN_STRONG_INLINE Packet2d pset1<Packet2d>(const double& from) { return vdupq_n_f64(from); }
|
|
|
|
template<> EIGEN_STRONG_INLINE Packet2d plset<Packet2d>(const double& a)
|
|
{
|
|
const double countdown_raw[] = {0.0,1.0};
|
|
const Packet2d countdown = vld1q_f64(countdown_raw);
|
|
return vaddq_f64(pset1<Packet2d>(a), countdown);
|
|
}
|
|
template<> EIGEN_STRONG_INLINE Packet2d padd<Packet2d>(const Packet2d& a, const Packet2d& b) { return vaddq_f64(a,b); }
|
|
|
|
template<> EIGEN_STRONG_INLINE Packet2d psub<Packet2d>(const Packet2d& a, const Packet2d& b) { return vsubq_f64(a,b); }
|
|
|
|
template<> EIGEN_STRONG_INLINE Packet2d pnegate(const Packet2d& a) { return vnegq_f64(a); }
|
|
|
|
template<> EIGEN_STRONG_INLINE Packet2d pconj(const Packet2d& a) { return a; }
|
|
|
|
template<> EIGEN_STRONG_INLINE Packet2d pmul<Packet2d>(const Packet2d& a, const Packet2d& b) { return vmulq_f64(a,b); }
|
|
|
|
template<> EIGEN_STRONG_INLINE Packet2d pdiv<Packet2d>(const Packet2d& a, const Packet2d& b) { return vdivq_f64(a,b); }
|
|
|
|
#ifdef __ARM_FEATURE_FMA
|
|
// See bug 936. See above comment about FMA for float.
|
|
template<> EIGEN_STRONG_INLINE Packet2d pmadd(const Packet2d& a, const Packet2d& b, const Packet2d& c) { return vfmaq_f64(c,a,b); }
|
|
#else
|
|
template<> EIGEN_STRONG_INLINE Packet2d pmadd(const Packet2d& a, const Packet2d& b, const Packet2d& c) { return vmlaq_f64(c,a,b); }
|
|
#endif
|
|
|
|
template<> EIGEN_STRONG_INLINE Packet2d pmin<Packet2d>(const Packet2d& a, const Packet2d& b) { return vminq_f64(a,b); }
|
|
|
|
template<> EIGEN_STRONG_INLINE Packet2d pmax<Packet2d>(const Packet2d& a, const Packet2d& b) { return vmaxq_f64(a,b); }
|
|
|
|
// Logical Operations are not supported for float, so we have to reinterpret casts using NEON intrinsics
|
|
template<> EIGEN_STRONG_INLINE Packet2d pand<Packet2d>(const Packet2d& a, const Packet2d& b)
|
|
{
|
|
return vreinterpretq_f64_u64(vandq_u64(vreinterpretq_u64_f64(a),vreinterpretq_u64_f64(b)));
|
|
}
|
|
|
|
template<> EIGEN_STRONG_INLINE Packet2d por<Packet2d>(const Packet2d& a, const Packet2d& b)
|
|
{
|
|
return vreinterpretq_f64_u64(vorrq_u64(vreinterpretq_u64_f64(a),vreinterpretq_u64_f64(b)));
|
|
}
|
|
|
|
template<> EIGEN_STRONG_INLINE Packet2d pxor<Packet2d>(const Packet2d& a, const Packet2d& b)
|
|
{
|
|
return vreinterpretq_f64_u64(veorq_u64(vreinterpretq_u64_f64(a),vreinterpretq_u64_f64(b)));
|
|
}
|
|
|
|
template<> EIGEN_STRONG_INLINE Packet2d pandnot<Packet2d>(const Packet2d& a, const Packet2d& b)
|
|
{
|
|
return vreinterpretq_f64_u64(vbicq_u64(vreinterpretq_u64_f64(a),vreinterpretq_u64_f64(b)));
|
|
}
|
|
|
|
template<> EIGEN_STRONG_INLINE Packet2d pload<Packet2d>(const double* from) { EIGEN_DEBUG_ALIGNED_LOAD return vld1q_f64(from); }
|
|
|
|
template<> EIGEN_STRONG_INLINE Packet2d ploadu<Packet2d>(const double* from) { EIGEN_DEBUG_UNALIGNED_LOAD return vld1q_f64(from); }
|
|
|
|
template<> EIGEN_STRONG_INLINE Packet2d ploaddup<Packet2d>(const double* from)
|
|
{
|
|
return vld1q_dup_f64(from);
|
|
}
|
|
template<> EIGEN_STRONG_INLINE void pstore<double>(double* to, const Packet2d& from) { EIGEN_DEBUG_ALIGNED_STORE vst1q_f64(to, from); }
|
|
|
|
template<> EIGEN_STRONG_INLINE void pstoreu<double>(double* to, const Packet2d& from) { EIGEN_DEBUG_UNALIGNED_STORE vst1q_f64(to, from); }
|
|
|
|
template<> EIGEN_DEVICE_FUNC inline Packet2d pgather<double, Packet2d>(const double* from, Index stride)
|
|
{
|
|
Packet2d res = pset1<Packet2d>(0.0);
|
|
res = vsetq_lane_f64(from[0*stride], res, 0);
|
|
res = vsetq_lane_f64(from[1*stride], res, 1);
|
|
return res;
|
|
}
|
|
template<> EIGEN_DEVICE_FUNC inline void pscatter<double, Packet2d>(double* to, const Packet2d& from, Index stride)
|
|
{
|
|
to[stride*0] = vgetq_lane_f64(from, 0);
|
|
to[stride*1] = vgetq_lane_f64(from, 1);
|
|
}
|
|
template<> EIGEN_STRONG_INLINE void prefetch<double>(const double* addr) { EIGEN_ARM_PREFETCH(addr); }
|
|
|
|
// FIXME only store the 2 first elements ?
|
|
template<> EIGEN_STRONG_INLINE double pfirst<Packet2d>(const Packet2d& a) { return vgetq_lane_f64(a, 0); }
|
|
|
|
template<> EIGEN_STRONG_INLINE Packet2d preverse(const Packet2d& a) { return vcombine_f64(vget_high_f64(a), vget_low_f64(a)); }
|
|
|
|
template<> EIGEN_STRONG_INLINE Packet2d pabs(const Packet2d& a) { return vabsq_f64(a); }
|
|
|
|
#if EIGEN_COMP_CLANG && defined(__apple_build_version__)
|
|
// workaround ICE, see bug 907
|
|
template<> EIGEN_STRONG_INLINE double predux<Packet2d>(const Packet2d& a) { return (vget_low_f64(a) + vget_high_f64(a))[0]; }
|
|
#else
|
|
template<> EIGEN_STRONG_INLINE double predux<Packet2d>(const Packet2d& a) { return vget_lane_f64(vget_low_f64(a) + vget_high_f64(a), 0); }
|
|
#endif
|
|
|
|
template<> EIGEN_STRONG_INLINE Packet2d preduxp<Packet2d>(const Packet2d* vecs)
|
|
{
|
|
float64x2_t trn1, trn2;
|
|
|
|
// NEON zip performs interleaving of the supplied vectors.
|
|
// We perform two interleaves in a row to acquire the transposed vector
|
|
trn1 = vzip1q_f64(vecs[0], vecs[1]);
|
|
trn2 = vzip2q_f64(vecs[0], vecs[1]);
|
|
|
|
// Do the addition of the resulting vectors
|
|
return vaddq_f64(trn1, trn2);
|
|
}
|
|
// Other reduction functions:
|
|
// mul
|
|
#if EIGEN_COMP_CLANG && defined(__apple_build_version__)
|
|
template<> EIGEN_STRONG_INLINE double predux_mul<Packet2d>(const Packet2d& a) { return (vget_low_f64(a) * vget_high_f64(a))[0]; }
|
|
#else
|
|
template<> EIGEN_STRONG_INLINE double predux_mul<Packet2d>(const Packet2d& a) { return vget_lane_f64(vget_low_f64(a) * vget_high_f64(a), 0); }
|
|
#endif
|
|
|
|
// min
|
|
template<> EIGEN_STRONG_INLINE double predux_min<Packet2d>(const Packet2d& a) { return vgetq_lane_f64(vpminq_f64(a, a), 0); }
|
|
|
|
// max
|
|
template<> EIGEN_STRONG_INLINE double predux_max<Packet2d>(const Packet2d& a) { return vgetq_lane_f64(vpmaxq_f64(a, a), 0); }
|
|
|
|
// this PALIGN_NEON business is to work around a bug in LLVM Clang 3.0 causing incorrect compilation errors,
|
|
// see bug 347 and this LLVM bug: http://llvm.org/bugs/show_bug.cgi?id=11074
|
|
#define PALIGN_NEON(Offset,Type,Command) \
|
|
template<>\
|
|
struct palign_impl<Offset,Type>\
|
|
{\
|
|
EIGEN_STRONG_INLINE static void run(Type& first, const Type& second)\
|
|
{\
|
|
if (Offset!=0)\
|
|
first = Command(first, second, Offset);\
|
|
}\
|
|
};\
|
|
|
|
PALIGN_NEON(0,Packet2d,vextq_f64)
|
|
PALIGN_NEON(1,Packet2d,vextq_f64)
|
|
#undef PALIGN_NEON
|
|
|
|
EIGEN_DEVICE_FUNC inline void
|
|
ptranspose(PacketBlock<Packet2d,2>& kernel) {
|
|
float64x2_t trn1 = vzip1q_f64(kernel.packet[0], kernel.packet[1]);
|
|
float64x2_t trn2 = vzip2q_f64(kernel.packet[0], kernel.packet[1]);
|
|
|
|
kernel.packet[0] = trn1;
|
|
kernel.packet[1] = trn2;
|
|
}
|
|
#endif // EIGEN_ARCH_ARM64
|
|
|
|
} // end namespace internal
|
|
|
|
} // end namespace Eigen
|
|
|
|
#endif // EIGEN_PACKET_MATH_NEON_H
|