mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-07-23 21:34:30 +08:00
500 lines
19 KiB
C++
Executable File
500 lines
19 KiB
C++
Executable File
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#ifndef EIGEN_BLASUTIL_H
|
|
#define EIGEN_BLASUTIL_H
|
|
|
|
// This file contains many lightweight helper classes used to
|
|
// implement and control fast level 2 and level 3 BLAS-like routines.
|
|
|
|
namespace Eigen {
|
|
|
|
namespace internal {
|
|
|
|
// forward declarations
|
|
template<typename LhsScalar, typename RhsScalar, typename Index, typename DataMapper, int mr, int nr, bool ConjugateLhs=false, bool ConjugateRhs=false>
|
|
struct gebp_kernel;
|
|
|
|
template<typename Scalar, typename Index, typename DataMapper, int nr, int StorageOrder, bool Conjugate = false, bool PanelMode=false>
|
|
struct gemm_pack_rhs;
|
|
|
|
template<typename Scalar, typename Index, typename DataMapper, int Pack1, int Pack2, int StorageOrder, bool Conjugate = false, bool PanelMode = false>
|
|
struct gemm_pack_lhs;
|
|
|
|
template<
|
|
typename Index,
|
|
typename LhsScalar, int LhsStorageOrder, bool ConjugateLhs,
|
|
typename RhsScalar, int RhsStorageOrder, bool ConjugateRhs,
|
|
int ResStorageOrder, int ResInnerStride>
|
|
struct general_matrix_matrix_product;
|
|
|
|
template<typename Index,
|
|
typename LhsScalar, typename LhsMapper, int LhsStorageOrder, bool ConjugateLhs,
|
|
typename RhsScalar, typename RhsMapper, bool ConjugateRhs, int Version=Specialized>
|
|
struct general_matrix_vector_product;
|
|
|
|
|
|
template<bool Conjugate> struct conj_if;
|
|
|
|
template<> struct conj_if<true> {
|
|
template<typename T>
|
|
inline T operator()(const T& x) const { return numext::conj(x); }
|
|
template<typename T>
|
|
inline T pconj(const T& x) const { return internal::pconj(x); }
|
|
};
|
|
|
|
template<> struct conj_if<false> {
|
|
template<typename T>
|
|
inline const T& operator()(const T& x) const { return x; }
|
|
template<typename T>
|
|
inline const T& pconj(const T& x) const { return x; }
|
|
};
|
|
|
|
// Generic implementation for custom complex types.
|
|
template<typename LhsScalar, typename RhsScalar, bool ConjLhs, bool ConjRhs>
|
|
struct conj_helper
|
|
{
|
|
typedef typename ScalarBinaryOpTraits<LhsScalar,RhsScalar>::ReturnType Scalar;
|
|
|
|
EIGEN_STRONG_INLINE Scalar pmadd(const LhsScalar& x, const RhsScalar& y, const Scalar& c) const
|
|
{ return padd(c, pmul(x,y)); }
|
|
|
|
EIGEN_STRONG_INLINE Scalar pmul(const LhsScalar& x, const RhsScalar& y) const
|
|
{ return conj_if<ConjLhs>()(x) * conj_if<ConjRhs>()(y); }
|
|
};
|
|
|
|
template<typename Scalar> struct conj_helper<Scalar,Scalar,false,false>
|
|
{
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar pmadd(const Scalar& x, const Scalar& y, const Scalar& c) const { return internal::pmadd(x,y,c); }
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar pmul(const Scalar& x, const Scalar& y) const { return internal::pmul(x,y); }
|
|
};
|
|
|
|
template<typename RealScalar> struct conj_helper<std::complex<RealScalar>, std::complex<RealScalar>, false,true>
|
|
{
|
|
typedef std::complex<RealScalar> Scalar;
|
|
EIGEN_STRONG_INLINE Scalar pmadd(const Scalar& x, const Scalar& y, const Scalar& c) const
|
|
{ return c + pmul(x,y); }
|
|
|
|
EIGEN_STRONG_INLINE Scalar pmul(const Scalar& x, const Scalar& y) const
|
|
{ return Scalar(numext::real(x)*numext::real(y) + numext::imag(x)*numext::imag(y), numext::imag(x)*numext::real(y) - numext::real(x)*numext::imag(y)); }
|
|
};
|
|
|
|
template<typename RealScalar> struct conj_helper<std::complex<RealScalar>, std::complex<RealScalar>, true,false>
|
|
{
|
|
typedef std::complex<RealScalar> Scalar;
|
|
EIGEN_STRONG_INLINE Scalar pmadd(const Scalar& x, const Scalar& y, const Scalar& c) const
|
|
{ return c + pmul(x,y); }
|
|
|
|
EIGEN_STRONG_INLINE Scalar pmul(const Scalar& x, const Scalar& y) const
|
|
{ return Scalar(numext::real(x)*numext::real(y) + numext::imag(x)*numext::imag(y), numext::real(x)*numext::imag(y) - numext::imag(x)*numext::real(y)); }
|
|
};
|
|
|
|
template<typename RealScalar> struct conj_helper<std::complex<RealScalar>, std::complex<RealScalar>, true,true>
|
|
{
|
|
typedef std::complex<RealScalar> Scalar;
|
|
EIGEN_STRONG_INLINE Scalar pmadd(const Scalar& x, const Scalar& y, const Scalar& c) const
|
|
{ return c + pmul(x,y); }
|
|
|
|
EIGEN_STRONG_INLINE Scalar pmul(const Scalar& x, const Scalar& y) const
|
|
{ return Scalar(numext::real(x)*numext::real(y) - numext::imag(x)*numext::imag(y), - numext::real(x)*numext::imag(y) - numext::imag(x)*numext::real(y)); }
|
|
};
|
|
|
|
template<typename RealScalar,bool Conj> struct conj_helper<std::complex<RealScalar>, RealScalar, Conj,false>
|
|
{
|
|
typedef std::complex<RealScalar> Scalar;
|
|
EIGEN_STRONG_INLINE Scalar pmadd(const Scalar& x, const RealScalar& y, const Scalar& c) const
|
|
{ return padd(c, pmul(x,y)); }
|
|
EIGEN_STRONG_INLINE Scalar pmul(const Scalar& x, const RealScalar& y) const
|
|
{ return conj_if<Conj>()(x)*y; }
|
|
};
|
|
|
|
template<typename RealScalar,bool Conj> struct conj_helper<RealScalar, std::complex<RealScalar>, false,Conj>
|
|
{
|
|
typedef std::complex<RealScalar> Scalar;
|
|
EIGEN_STRONG_INLINE Scalar pmadd(const RealScalar& x, const Scalar& y, const Scalar& c) const
|
|
{ return padd(c, pmul(x,y)); }
|
|
EIGEN_STRONG_INLINE Scalar pmul(const RealScalar& x, const Scalar& y) const
|
|
{ return x*conj_if<Conj>()(y); }
|
|
};
|
|
|
|
template<typename From,typename To> struct get_factor {
|
|
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE To run(const From& x) { return To(x); }
|
|
};
|
|
|
|
template<typename Scalar> struct get_factor<Scalar,typename NumTraits<Scalar>::Real> {
|
|
EIGEN_DEVICE_FUNC
|
|
static EIGEN_STRONG_INLINE typename NumTraits<Scalar>::Real run(const Scalar& x) { return numext::real(x); }
|
|
};
|
|
|
|
|
|
template<typename Scalar, typename Index>
|
|
class BlasVectorMapper {
|
|
public:
|
|
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE BlasVectorMapper(Scalar *data) : m_data(data) {}
|
|
|
|
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Scalar operator()(Index i) const {
|
|
return m_data[i];
|
|
}
|
|
template <typename Packet, int AlignmentType>
|
|
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet load(Index i) const {
|
|
return ploadt<Packet, AlignmentType>(m_data + i);
|
|
}
|
|
|
|
template <typename Packet>
|
|
EIGEN_DEVICE_FUNC bool aligned(Index i) const {
|
|
return (UIntPtr(m_data+i)%sizeof(Packet))==0;
|
|
}
|
|
|
|
protected:
|
|
Scalar* m_data;
|
|
};
|
|
|
|
template<typename Scalar, typename Index, int AlignmentType, int Incr=1>
|
|
class BlasLinearMapper;
|
|
|
|
template<typename Scalar, typename Index, int AlignmentType>
|
|
class BlasLinearMapper<Scalar,Index,AlignmentType,1> {
|
|
public:
|
|
typedef typename packet_traits<Scalar>::type Packet;
|
|
typedef typename packet_traits<Scalar>::half HalfPacket;
|
|
|
|
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE BlasLinearMapper(Scalar *data, Index incr=1)
|
|
: m_data(data)
|
|
{
|
|
EIGEN_ONLY_USED_FOR_DEBUG(incr);
|
|
eigen_assert(incr==1);
|
|
}
|
|
|
|
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void prefetch(int i) const {
|
|
internal::prefetch(&operator()(i));
|
|
}
|
|
|
|
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Scalar& operator()(Index i) const {
|
|
return m_data[i];
|
|
}
|
|
|
|
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet loadPacket(Index i) const {
|
|
return ploadt<Packet, AlignmentType>(m_data + i);
|
|
}
|
|
|
|
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE HalfPacket loadHalfPacket(Index i) const {
|
|
return ploadt<HalfPacket, AlignmentType>(m_data + i);
|
|
}
|
|
|
|
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void storePacket(Index i, const Packet &p) const {
|
|
pstoret<Scalar, Packet, AlignmentType>(m_data + i, p);
|
|
}
|
|
|
|
protected:
|
|
Scalar *m_data;
|
|
};
|
|
|
|
// Lightweight helper class to access matrix coefficients.
|
|
template<typename Scalar, typename Index, int StorageOrder, int AlignmentType = Unaligned, int Incr = 1>
|
|
class blas_data_mapper;
|
|
|
|
template<typename Scalar, typename Index, int StorageOrder, int AlignmentType>
|
|
class blas_data_mapper<Scalar,Index,StorageOrder,AlignmentType,1>
|
|
{
|
|
public:
|
|
typedef typename packet_traits<Scalar>::type Packet;
|
|
typedef typename packet_traits<Scalar>::half HalfPacket;
|
|
|
|
typedef BlasLinearMapper<Scalar, Index, AlignmentType> LinearMapper;
|
|
typedef BlasVectorMapper<Scalar, Index> VectorMapper;
|
|
|
|
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE blas_data_mapper(Scalar* data, Index stride, Index incr=1)
|
|
: m_data(data), m_stride(stride)
|
|
{
|
|
EIGEN_ONLY_USED_FOR_DEBUG(incr);
|
|
eigen_assert(incr==1);
|
|
}
|
|
|
|
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE blas_data_mapper<Scalar, Index, StorageOrder, AlignmentType>
|
|
getSubMapper(Index i, Index j) const {
|
|
return blas_data_mapper<Scalar, Index, StorageOrder, AlignmentType>(&operator()(i, j), m_stride);
|
|
}
|
|
|
|
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE LinearMapper getLinearMapper(Index i, Index j) const {
|
|
return LinearMapper(&operator()(i, j));
|
|
}
|
|
|
|
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE VectorMapper getVectorMapper(Index i, Index j) const {
|
|
return VectorMapper(&operator()(i, j));
|
|
}
|
|
|
|
|
|
EIGEN_DEVICE_FUNC
|
|
EIGEN_ALWAYS_INLINE Scalar& operator()(Index i, Index j) const {
|
|
return m_data[StorageOrder==RowMajor ? j + i*m_stride : i + j*m_stride];
|
|
}
|
|
|
|
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet loadPacket(Index i, Index j) const {
|
|
return ploadt<Packet, AlignmentType>(&operator()(i, j));
|
|
}
|
|
|
|
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE HalfPacket loadHalfPacket(Index i, Index j) const {
|
|
return ploadt<HalfPacket, AlignmentType>(&operator()(i, j));
|
|
}
|
|
|
|
template<typename SubPacket>
|
|
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void scatterPacket(Index i, Index j, const SubPacket &p) const {
|
|
pscatter<Scalar, SubPacket>(&operator()(i, j), p, m_stride);
|
|
}
|
|
|
|
template<typename SubPacket>
|
|
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE SubPacket gatherPacket(Index i, Index j) const {
|
|
return pgather<Scalar, SubPacket>(&operator()(i, j), m_stride);
|
|
}
|
|
|
|
EIGEN_DEVICE_FUNC const Index stride() const { return m_stride; }
|
|
EIGEN_DEVICE_FUNC const Scalar* data() const { return m_data; }
|
|
|
|
EIGEN_DEVICE_FUNC Index firstAligned(Index size) const {
|
|
if (UIntPtr(m_data)%sizeof(Scalar)) {
|
|
return -1;
|
|
}
|
|
return internal::first_default_aligned(m_data, size);
|
|
}
|
|
|
|
protected:
|
|
Scalar* EIGEN_RESTRICT m_data;
|
|
const Index m_stride;
|
|
};
|
|
|
|
// Implementation of non-natural increment (i.e. inner-stride != 1)
|
|
// The exposed API is not complete yet compared to the Incr==1 case
|
|
// because some features makes less sense in this case.
|
|
template<typename Scalar, typename Index, int AlignmentType, int Incr>
|
|
class BlasLinearMapper
|
|
{
|
|
public:
|
|
typedef typename packet_traits<Scalar>::type Packet;
|
|
typedef typename packet_traits<Scalar>::half HalfPacket;
|
|
|
|
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE BlasLinearMapper(Scalar *data,Index incr) : m_data(data), m_incr(incr) {}
|
|
|
|
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void prefetch(int i) const {
|
|
internal::prefetch(&operator()(i));
|
|
}
|
|
|
|
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Scalar& operator()(Index i) const {
|
|
return m_data[i*m_incr.value()];
|
|
}
|
|
|
|
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet loadPacket(Index i) const {
|
|
return pgather<Scalar,Packet>(m_data + i*m_incr.value(), m_incr.value());
|
|
}
|
|
|
|
template<typename PacketType>
|
|
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void storePacket(Index i, const PacketType &p) const {
|
|
pscatter<Scalar, PacketType>(m_data + i*m_incr.value(), p, m_incr.value());
|
|
}
|
|
|
|
protected:
|
|
Scalar *m_data;
|
|
const internal::variable_if_dynamic<Index,Incr> m_incr;
|
|
};
|
|
|
|
template<typename Scalar, typename Index, int StorageOrder, int AlignmentType,int Incr>
|
|
class blas_data_mapper
|
|
{
|
|
public:
|
|
typedef typename packet_traits<Scalar>::type Packet;
|
|
typedef typename packet_traits<Scalar>::half HalfPacket;
|
|
|
|
typedef BlasLinearMapper<Scalar, Index, AlignmentType,Incr> LinearMapper;
|
|
|
|
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE blas_data_mapper(Scalar* data, Index stride, Index incr) : m_data(data), m_stride(stride), m_incr(incr) {}
|
|
|
|
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE blas_data_mapper
|
|
getSubMapper(Index i, Index j) const {
|
|
return blas_data_mapper(&operator()(i, j), m_stride, m_incr.value());
|
|
}
|
|
|
|
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE LinearMapper getLinearMapper(Index i, Index j) const {
|
|
return LinearMapper(&operator()(i, j), m_incr.value());
|
|
}
|
|
|
|
EIGEN_DEVICE_FUNC
|
|
EIGEN_ALWAYS_INLINE Scalar& operator()(Index i, Index j) const {
|
|
return m_data[StorageOrder==RowMajor ? j*m_incr.value() + i*m_stride : i*m_incr.value() + j*m_stride];
|
|
}
|
|
|
|
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet loadPacket(Index i, Index j) const {
|
|
return pgather<Scalar,Packet>(&operator()(i, j),m_incr.value());
|
|
}
|
|
|
|
template <typename PacketT, int AlignmentT>
|
|
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE PacketT load(Index i, Index j) const {
|
|
return pgather<Scalar,PacketT>(&operator()(i, j),m_incr.value());
|
|
}
|
|
|
|
template<typename SubPacket>
|
|
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void scatterPacket(Index i, Index j, const SubPacket &p) const {
|
|
pscatter<Scalar, SubPacket>(&operator()(i, j), p, m_stride);
|
|
}
|
|
|
|
template<typename SubPacket>
|
|
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE SubPacket gatherPacket(Index i, Index j) const {
|
|
return pgather<Scalar, SubPacket>(&operator()(i, j), m_stride);
|
|
}
|
|
|
|
protected:
|
|
Scalar* EIGEN_RESTRICT m_data;
|
|
const Index m_stride;
|
|
const internal::variable_if_dynamic<Index,Incr> m_incr;
|
|
};
|
|
|
|
// lightweight helper class to access matrix coefficients (const version)
|
|
template<typename Scalar, typename Index, int StorageOrder>
|
|
class const_blas_data_mapper : public blas_data_mapper<const Scalar, Index, StorageOrder> {
|
|
public:
|
|
EIGEN_ALWAYS_INLINE const_blas_data_mapper(const Scalar *data, Index stride) : blas_data_mapper<const Scalar, Index, StorageOrder>(data, stride) {}
|
|
|
|
EIGEN_ALWAYS_INLINE const_blas_data_mapper<Scalar, Index, StorageOrder> getSubMapper(Index i, Index j) const {
|
|
return const_blas_data_mapper<Scalar, Index, StorageOrder>(&(this->operator()(i, j)), this->m_stride);
|
|
}
|
|
};
|
|
|
|
|
|
/* Helper class to analyze the factors of a Product expression.
|
|
* In particular it allows to pop out operator-, scalar multiples,
|
|
* and conjugate */
|
|
template<typename XprType> struct blas_traits
|
|
{
|
|
typedef typename traits<XprType>::Scalar Scalar;
|
|
typedef const XprType& ExtractType;
|
|
typedef XprType _ExtractType;
|
|
enum {
|
|
IsComplex = NumTraits<Scalar>::IsComplex,
|
|
IsTransposed = false,
|
|
NeedToConjugate = false,
|
|
HasUsableDirectAccess = ( (int(XprType::Flags)&DirectAccessBit)
|
|
&& ( bool(XprType::IsVectorAtCompileTime)
|
|
|| int(inner_stride_at_compile_time<XprType>::ret) == 1)
|
|
) ? 1 : 0
|
|
};
|
|
typedef typename conditional<bool(HasUsableDirectAccess),
|
|
ExtractType,
|
|
typename _ExtractType::PlainObject
|
|
>::type DirectLinearAccessType;
|
|
static inline ExtractType extract(const XprType& x) { return x; }
|
|
static inline const Scalar extractScalarFactor(const XprType&) { return Scalar(1); }
|
|
};
|
|
|
|
// pop conjugate
|
|
template<typename Scalar, typename NestedXpr>
|
|
struct blas_traits<CwiseUnaryOp<scalar_conjugate_op<Scalar>, NestedXpr> >
|
|
: blas_traits<NestedXpr>
|
|
{
|
|
typedef blas_traits<NestedXpr> Base;
|
|
typedef CwiseUnaryOp<scalar_conjugate_op<Scalar>, NestedXpr> XprType;
|
|
typedef typename Base::ExtractType ExtractType;
|
|
|
|
enum {
|
|
IsComplex = NumTraits<Scalar>::IsComplex,
|
|
NeedToConjugate = Base::NeedToConjugate ? 0 : IsComplex
|
|
};
|
|
static inline ExtractType extract(const XprType& x) { return Base::extract(x.nestedExpression()); }
|
|
static inline Scalar extractScalarFactor(const XprType& x) { return conj(Base::extractScalarFactor(x.nestedExpression())); }
|
|
};
|
|
|
|
// pop scalar multiple
|
|
template<typename Scalar, typename NestedXpr, typename Plain>
|
|
struct blas_traits<CwiseBinaryOp<scalar_product_op<Scalar>, const CwiseNullaryOp<scalar_constant_op<Scalar>,Plain>, NestedXpr> >
|
|
: blas_traits<NestedXpr>
|
|
{
|
|
typedef blas_traits<NestedXpr> Base;
|
|
typedef CwiseBinaryOp<scalar_product_op<Scalar>, const CwiseNullaryOp<scalar_constant_op<Scalar>,Plain>, NestedXpr> XprType;
|
|
typedef typename Base::ExtractType ExtractType;
|
|
static inline ExtractType extract(const XprType& x) { return Base::extract(x.rhs()); }
|
|
static inline Scalar extractScalarFactor(const XprType& x)
|
|
{ return x.lhs().functor().m_other * Base::extractScalarFactor(x.rhs()); }
|
|
};
|
|
template<typename Scalar, typename NestedXpr, typename Plain>
|
|
struct blas_traits<CwiseBinaryOp<scalar_product_op<Scalar>, NestedXpr, const CwiseNullaryOp<scalar_constant_op<Scalar>,Plain> > >
|
|
: blas_traits<NestedXpr>
|
|
{
|
|
typedef blas_traits<NestedXpr> Base;
|
|
typedef CwiseBinaryOp<scalar_product_op<Scalar>, NestedXpr, const CwiseNullaryOp<scalar_constant_op<Scalar>,Plain> > XprType;
|
|
typedef typename Base::ExtractType ExtractType;
|
|
static inline ExtractType extract(const XprType& x) { return Base::extract(x.lhs()); }
|
|
static inline Scalar extractScalarFactor(const XprType& x)
|
|
{ return Base::extractScalarFactor(x.lhs()) * x.rhs().functor().m_other; }
|
|
};
|
|
template<typename Scalar, typename Plain1, typename Plain2>
|
|
struct blas_traits<CwiseBinaryOp<scalar_product_op<Scalar>, const CwiseNullaryOp<scalar_constant_op<Scalar>,Plain1>,
|
|
const CwiseNullaryOp<scalar_constant_op<Scalar>,Plain2> > >
|
|
: blas_traits<CwiseNullaryOp<scalar_constant_op<Scalar>,Plain1> >
|
|
{};
|
|
|
|
// pop opposite
|
|
template<typename Scalar, typename NestedXpr>
|
|
struct blas_traits<CwiseUnaryOp<scalar_opposite_op<Scalar>, NestedXpr> >
|
|
: blas_traits<NestedXpr>
|
|
{
|
|
typedef blas_traits<NestedXpr> Base;
|
|
typedef CwiseUnaryOp<scalar_opposite_op<Scalar>, NestedXpr> XprType;
|
|
typedef typename Base::ExtractType ExtractType;
|
|
static inline ExtractType extract(const XprType& x) { return Base::extract(x.nestedExpression()); }
|
|
static inline Scalar extractScalarFactor(const XprType& x)
|
|
{ return - Base::extractScalarFactor(x.nestedExpression()); }
|
|
};
|
|
|
|
// pop/push transpose
|
|
template<typename NestedXpr>
|
|
struct blas_traits<Transpose<NestedXpr> >
|
|
: blas_traits<NestedXpr>
|
|
{
|
|
typedef typename NestedXpr::Scalar Scalar;
|
|
typedef blas_traits<NestedXpr> Base;
|
|
typedef Transpose<NestedXpr> XprType;
|
|
typedef Transpose<const typename Base::_ExtractType> ExtractType; // const to get rid of a compile error; anyway blas traits are only used on the RHS
|
|
typedef Transpose<const typename Base::_ExtractType> _ExtractType;
|
|
typedef typename conditional<bool(Base::HasUsableDirectAccess),
|
|
ExtractType,
|
|
typename ExtractType::PlainObject
|
|
>::type DirectLinearAccessType;
|
|
enum {
|
|
IsTransposed = Base::IsTransposed ? 0 : 1
|
|
};
|
|
static inline ExtractType extract(const XprType& x) { return ExtractType(Base::extract(x.nestedExpression())); }
|
|
static inline Scalar extractScalarFactor(const XprType& x) { return Base::extractScalarFactor(x.nestedExpression()); }
|
|
};
|
|
|
|
template<typename T>
|
|
struct blas_traits<const T>
|
|
: blas_traits<T>
|
|
{};
|
|
|
|
template<typename T, bool HasUsableDirectAccess=blas_traits<T>::HasUsableDirectAccess>
|
|
struct extract_data_selector {
|
|
static const typename T::Scalar* run(const T& m)
|
|
{
|
|
return blas_traits<T>::extract(m).data();
|
|
}
|
|
};
|
|
|
|
template<typename T>
|
|
struct extract_data_selector<T,false> {
|
|
static typename T::Scalar* run(const T&) { return 0; }
|
|
};
|
|
|
|
template<typename T> const typename T::Scalar* extract_data(const T& m)
|
|
{
|
|
return extract_data_selector<T>::run(m);
|
|
}
|
|
|
|
} // end namespace internal
|
|
|
|
} // end namespace Eigen
|
|
|
|
#endif // EIGEN_BLASUTIL_H
|