mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-04-30 15:54:13 +08:00
504 lines
20 KiB
C++
504 lines
20 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#ifndef EIGEN_HOMOGENEOUS_H
|
|
#define EIGEN_HOMOGENEOUS_H
|
|
|
|
#include "./InternalHeaderCheck.h"
|
|
|
|
namespace Eigen {
|
|
|
|
/** \geometry_module \ingroup Geometry_Module
|
|
*
|
|
* \class Homogeneous
|
|
*
|
|
* \brief Expression of one (or a set of) homogeneous vector(s)
|
|
*
|
|
* \param MatrixType the type of the object in which we are making homogeneous
|
|
*
|
|
* This class represents an expression of one (or a set of) homogeneous vector(s).
|
|
* It is the return type of MatrixBase::homogeneous() and most of the time
|
|
* this is the only way it is used.
|
|
*
|
|
* \sa MatrixBase::homogeneous()
|
|
*/
|
|
|
|
namespace internal {
|
|
|
|
template<typename MatrixType,int Direction>
|
|
struct traits<Homogeneous<MatrixType,Direction> >
|
|
: traits<MatrixType>
|
|
{
|
|
typedef typename traits<MatrixType>::StorageKind StorageKind;
|
|
typedef typename ref_selector<MatrixType>::type MatrixTypeNested;
|
|
typedef typename remove_reference<MatrixTypeNested>::type MatrixTypeNested_;
|
|
enum {
|
|
RowsPlusOne = (MatrixType::RowsAtCompileTime != Dynamic) ?
|
|
int(MatrixType::RowsAtCompileTime) + 1 : Dynamic,
|
|
ColsPlusOne = (MatrixType::ColsAtCompileTime != Dynamic) ?
|
|
int(MatrixType::ColsAtCompileTime) + 1 : Dynamic,
|
|
RowsAtCompileTime = Direction==Vertical ? RowsPlusOne : MatrixType::RowsAtCompileTime,
|
|
ColsAtCompileTime = Direction==Horizontal ? ColsPlusOne : MatrixType::ColsAtCompileTime,
|
|
MaxRowsAtCompileTime = RowsAtCompileTime,
|
|
MaxColsAtCompileTime = ColsAtCompileTime,
|
|
TmpFlags = MatrixTypeNested_::Flags & HereditaryBits,
|
|
Flags = ColsAtCompileTime==1 ? (TmpFlags & ~RowMajorBit)
|
|
: RowsAtCompileTime==1 ? (TmpFlags | RowMajorBit)
|
|
: TmpFlags
|
|
};
|
|
};
|
|
|
|
template<typename MatrixType,typename Lhs> struct homogeneous_left_product_impl;
|
|
template<typename MatrixType,typename Rhs> struct homogeneous_right_product_impl;
|
|
|
|
} // end namespace internal
|
|
|
|
template<typename MatrixType,int Direction_> class Homogeneous
|
|
: public MatrixBase<Homogeneous<MatrixType,Direction_> >, internal::no_assignment_operator
|
|
{
|
|
public:
|
|
|
|
typedef MatrixType NestedExpression;
|
|
enum { Direction = Direction_ };
|
|
|
|
typedef MatrixBase<Homogeneous> Base;
|
|
EIGEN_DENSE_PUBLIC_INTERFACE(Homogeneous)
|
|
|
|
EIGEN_DEVICE_FUNC explicit inline Homogeneous(const MatrixType& matrix)
|
|
: m_matrix(matrix)
|
|
{}
|
|
|
|
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
|
|
inline Index rows() const EIGEN_NOEXCEPT { return m_matrix.rows() + (int(Direction)==Vertical ? 1 : 0); }
|
|
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
|
|
inline Index cols() const EIGEN_NOEXCEPT { return m_matrix.cols() + (int(Direction)==Horizontal ? 1 : 0); }
|
|
|
|
EIGEN_DEVICE_FUNC const NestedExpression& nestedExpression() const { return m_matrix; }
|
|
|
|
template<typename Rhs>
|
|
EIGEN_DEVICE_FUNC inline const Product<Homogeneous,Rhs>
|
|
operator* (const MatrixBase<Rhs>& rhs) const
|
|
{
|
|
eigen_assert(int(Direction)==Horizontal);
|
|
return Product<Homogeneous,Rhs>(*this,rhs.derived());
|
|
}
|
|
|
|
template<typename Lhs> friend
|
|
EIGEN_DEVICE_FUNC inline const Product<Lhs,Homogeneous>
|
|
operator* (const MatrixBase<Lhs>& lhs, const Homogeneous& rhs)
|
|
{
|
|
eigen_assert(int(Direction)==Vertical);
|
|
return Product<Lhs,Homogeneous>(lhs.derived(),rhs);
|
|
}
|
|
|
|
template<typename Scalar, int Dim, int Mode, int Options> friend
|
|
EIGEN_DEVICE_FUNC inline const Product<Transform<Scalar,Dim,Mode,Options>, Homogeneous >
|
|
operator* (const Transform<Scalar,Dim,Mode,Options>& lhs, const Homogeneous& rhs)
|
|
{
|
|
eigen_assert(int(Direction)==Vertical);
|
|
return Product<Transform<Scalar,Dim,Mode,Options>, Homogeneous>(lhs,rhs);
|
|
}
|
|
|
|
template<typename Func>
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename internal::result_of<Func(Scalar,Scalar)>::type
|
|
redux(const Func& func) const
|
|
{
|
|
return func(m_matrix.redux(func), Scalar(1));
|
|
}
|
|
|
|
protected:
|
|
typename MatrixType::Nested m_matrix;
|
|
};
|
|
|
|
/** \geometry_module \ingroup Geometry_Module
|
|
*
|
|
* \returns a vector expression that is one longer than the vector argument, with the value 1 symbolically appended as the last coefficient.
|
|
*
|
|
* This can be used to convert affine coordinates to homogeneous coordinates.
|
|
*
|
|
* \only_for_vectors
|
|
*
|
|
* Example: \include MatrixBase_homogeneous.cpp
|
|
* Output: \verbinclude MatrixBase_homogeneous.out
|
|
*
|
|
* \sa VectorwiseOp::homogeneous(), class Homogeneous
|
|
*/
|
|
template<typename Derived>
|
|
EIGEN_DEVICE_FUNC inline typename MatrixBase<Derived>::HomogeneousReturnType
|
|
MatrixBase<Derived>::homogeneous() const
|
|
{
|
|
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived);
|
|
return HomogeneousReturnType(derived());
|
|
}
|
|
|
|
/** \geometry_module \ingroup Geometry_Module
|
|
*
|
|
* \returns an expression where the value 1 is symbolically appended as the final coefficient to each column (or row) of the matrix.
|
|
*
|
|
* This can be used to convert affine coordinates to homogeneous coordinates.
|
|
*
|
|
* Example: \include VectorwiseOp_homogeneous.cpp
|
|
* Output: \verbinclude VectorwiseOp_homogeneous.out
|
|
*
|
|
* \sa MatrixBase::homogeneous(), class Homogeneous */
|
|
template<typename ExpressionType, int Direction>
|
|
EIGEN_DEVICE_FUNC inline Homogeneous<ExpressionType,Direction>
|
|
VectorwiseOp<ExpressionType,Direction>::homogeneous() const
|
|
{
|
|
return HomogeneousReturnType(_expression());
|
|
}
|
|
|
|
/** \geometry_module \ingroup Geometry_Module
|
|
*
|
|
* \brief homogeneous normalization
|
|
*
|
|
* \returns a vector expression of the N-1 first coefficients of \c *this divided by that last coefficient.
|
|
*
|
|
* This can be used to convert homogeneous coordinates to affine coordinates.
|
|
*
|
|
* It is essentially a shortcut for:
|
|
* \code
|
|
this->head(this->size()-1)/this->coeff(this->size()-1);
|
|
\endcode
|
|
*
|
|
* Example: \include MatrixBase_hnormalized.cpp
|
|
* Output: \verbinclude MatrixBase_hnormalized.out
|
|
*
|
|
* \sa VectorwiseOp::hnormalized() */
|
|
template<typename Derived>
|
|
EIGEN_DEVICE_FUNC inline const typename MatrixBase<Derived>::HNormalizedReturnType
|
|
MatrixBase<Derived>::hnormalized() const
|
|
{
|
|
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived);
|
|
return ConstStartMinusOne(derived(),0,0,
|
|
ColsAtCompileTime==1?size()-1:1,
|
|
ColsAtCompileTime==1?1:size()-1) / coeff(size()-1);
|
|
}
|
|
|
|
/** \geometry_module \ingroup Geometry_Module
|
|
*
|
|
* \brief column or row-wise homogeneous normalization
|
|
*
|
|
* \returns an expression of the first N-1 coefficients of each column (or row) of \c *this divided by the last coefficient of each column (or row).
|
|
*
|
|
* This can be used to convert homogeneous coordinates to affine coordinates.
|
|
*
|
|
* It is conceptually equivalent to calling MatrixBase::hnormalized() to each column (or row) of \c *this.
|
|
*
|
|
* Example: \include DirectionWise_hnormalized.cpp
|
|
* Output: \verbinclude DirectionWise_hnormalized.out
|
|
*
|
|
* \sa MatrixBase::hnormalized() */
|
|
template<typename ExpressionType, int Direction>
|
|
EIGEN_DEVICE_FUNC inline const typename VectorwiseOp<ExpressionType,Direction>::HNormalizedReturnType
|
|
VectorwiseOp<ExpressionType,Direction>::hnormalized() const
|
|
{
|
|
return HNormalized_Block(_expression(),0,0,
|
|
Direction==Vertical ? _expression().rows()-1 : _expression().rows(),
|
|
Direction==Horizontal ? _expression().cols()-1 : _expression().cols()).cwiseQuotient(
|
|
Replicate<HNormalized_Factors,
|
|
Direction==Vertical ? HNormalized_SizeMinusOne : 1,
|
|
Direction==Horizontal ? HNormalized_SizeMinusOne : 1>
|
|
(HNormalized_Factors(_expression(),
|
|
Direction==Vertical ? _expression().rows()-1:0,
|
|
Direction==Horizontal ? _expression().cols()-1:0,
|
|
Direction==Vertical ? 1 : _expression().rows(),
|
|
Direction==Horizontal ? 1 : _expression().cols()),
|
|
Direction==Vertical ? _expression().rows()-1 : 1,
|
|
Direction==Horizontal ? _expression().cols()-1 : 1));
|
|
}
|
|
|
|
namespace internal {
|
|
|
|
template<typename MatrixOrTransformType>
|
|
struct take_matrix_for_product
|
|
{
|
|
typedef MatrixOrTransformType type;
|
|
EIGEN_DEVICE_FUNC static const type& run(const type &x) { return x; }
|
|
};
|
|
|
|
template<typename Scalar, int Dim, int Mode,int Options>
|
|
struct take_matrix_for_product<Transform<Scalar, Dim, Mode, Options> >
|
|
{
|
|
typedef Transform<Scalar, Dim, Mode, Options> TransformType;
|
|
typedef typename internal::add_const<typename TransformType::ConstAffinePart>::type type;
|
|
EIGEN_DEVICE_FUNC static type run (const TransformType& x) { return x.affine(); }
|
|
};
|
|
|
|
template<typename Scalar, int Dim, int Options>
|
|
struct take_matrix_for_product<Transform<Scalar, Dim, Projective, Options> >
|
|
{
|
|
typedef Transform<Scalar, Dim, Projective, Options> TransformType;
|
|
typedef typename TransformType::MatrixType type;
|
|
EIGEN_DEVICE_FUNC static const type& run (const TransformType& x) { return x.matrix(); }
|
|
};
|
|
|
|
template<typename MatrixType,typename Lhs>
|
|
struct traits<homogeneous_left_product_impl<Homogeneous<MatrixType,Vertical>,Lhs> >
|
|
{
|
|
typedef typename take_matrix_for_product<Lhs>::type LhsMatrixType;
|
|
typedef typename remove_all<MatrixType>::type MatrixTypeCleaned;
|
|
typedef typename remove_all<LhsMatrixType>::type LhsMatrixTypeCleaned;
|
|
typedef typename make_proper_matrix_type<
|
|
typename traits<MatrixTypeCleaned>::Scalar,
|
|
LhsMatrixTypeCleaned::RowsAtCompileTime,
|
|
MatrixTypeCleaned::ColsAtCompileTime,
|
|
MatrixTypeCleaned::PlainObject::Options,
|
|
LhsMatrixTypeCleaned::MaxRowsAtCompileTime,
|
|
MatrixTypeCleaned::MaxColsAtCompileTime>::type ReturnType;
|
|
};
|
|
|
|
template<typename MatrixType,typename Lhs>
|
|
struct homogeneous_left_product_impl<Homogeneous<MatrixType,Vertical>,Lhs>
|
|
: public ReturnByValue<homogeneous_left_product_impl<Homogeneous<MatrixType,Vertical>,Lhs> >
|
|
{
|
|
typedef typename traits<homogeneous_left_product_impl>::LhsMatrixType LhsMatrixType;
|
|
typedef typename remove_all<LhsMatrixType>::type LhsMatrixTypeCleaned;
|
|
typedef typename remove_all<typename LhsMatrixTypeCleaned::Nested>::type LhsMatrixTypeNested;
|
|
EIGEN_DEVICE_FUNC homogeneous_left_product_impl(const Lhs& lhs, const MatrixType& rhs)
|
|
: m_lhs(take_matrix_for_product<Lhs>::run(lhs)),
|
|
m_rhs(rhs)
|
|
{}
|
|
|
|
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
|
|
inline Index rows() const EIGEN_NOEXCEPT { return m_lhs.rows(); }
|
|
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
|
|
inline Index cols() const EIGEN_NOEXCEPT { return m_rhs.cols(); }
|
|
|
|
template<typename Dest> EIGEN_DEVICE_FUNC void evalTo(Dest& dst) const
|
|
{
|
|
// FIXME investigate how to allow lazy evaluation of this product when possible
|
|
dst = Block<const LhsMatrixTypeNested,
|
|
LhsMatrixTypeNested::RowsAtCompileTime,
|
|
LhsMatrixTypeNested::ColsAtCompileTime==Dynamic?Dynamic:LhsMatrixTypeNested::ColsAtCompileTime-1>
|
|
(m_lhs,0,0,m_lhs.rows(),m_lhs.cols()-1) * m_rhs;
|
|
dst += m_lhs.col(m_lhs.cols()-1).rowwise()
|
|
.template replicate<MatrixType::ColsAtCompileTime>(m_rhs.cols());
|
|
}
|
|
|
|
typename LhsMatrixTypeCleaned::Nested m_lhs;
|
|
typename MatrixType::Nested m_rhs;
|
|
};
|
|
|
|
template<typename MatrixType,typename Rhs>
|
|
struct traits<homogeneous_right_product_impl<Homogeneous<MatrixType,Horizontal>,Rhs> >
|
|
{
|
|
typedef typename make_proper_matrix_type<typename traits<MatrixType>::Scalar,
|
|
MatrixType::RowsAtCompileTime,
|
|
Rhs::ColsAtCompileTime,
|
|
MatrixType::PlainObject::Options,
|
|
MatrixType::MaxRowsAtCompileTime,
|
|
Rhs::MaxColsAtCompileTime>::type ReturnType;
|
|
};
|
|
|
|
template<typename MatrixType,typename Rhs>
|
|
struct homogeneous_right_product_impl<Homogeneous<MatrixType,Horizontal>,Rhs>
|
|
: public ReturnByValue<homogeneous_right_product_impl<Homogeneous<MatrixType,Horizontal>,Rhs> >
|
|
{
|
|
typedef typename remove_all<typename Rhs::Nested>::type RhsNested;
|
|
EIGEN_DEVICE_FUNC homogeneous_right_product_impl(const MatrixType& lhs, const Rhs& rhs)
|
|
: m_lhs(lhs), m_rhs(rhs)
|
|
{}
|
|
|
|
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline Index rows() const EIGEN_NOEXCEPT { return m_lhs.rows(); }
|
|
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline Index cols() const EIGEN_NOEXCEPT { return m_rhs.cols(); }
|
|
|
|
template<typename Dest> EIGEN_DEVICE_FUNC void evalTo(Dest& dst) const
|
|
{
|
|
// FIXME investigate how to allow lazy evaluation of this product when possible
|
|
dst = m_lhs * Block<const RhsNested,
|
|
RhsNested::RowsAtCompileTime==Dynamic?Dynamic:RhsNested::RowsAtCompileTime-1,
|
|
RhsNested::ColsAtCompileTime>
|
|
(m_rhs,0,0,m_rhs.rows()-1,m_rhs.cols());
|
|
dst += m_rhs.row(m_rhs.rows()-1).colwise()
|
|
.template replicate<MatrixType::RowsAtCompileTime>(m_lhs.rows());
|
|
}
|
|
|
|
typename MatrixType::Nested m_lhs;
|
|
typename Rhs::Nested m_rhs;
|
|
};
|
|
|
|
template<typename ArgType,int Direction>
|
|
struct evaluator_traits<Homogeneous<ArgType,Direction> >
|
|
{
|
|
typedef typename storage_kind_to_evaluator_kind<typename ArgType::StorageKind>::Kind Kind;
|
|
typedef HomogeneousShape Shape;
|
|
};
|
|
|
|
template<> struct AssignmentKind<DenseShape,HomogeneousShape> { typedef Dense2Dense Kind; };
|
|
|
|
|
|
template<typename ArgType,int Direction>
|
|
struct unary_evaluator<Homogeneous<ArgType,Direction>, IndexBased>
|
|
: evaluator<typename Homogeneous<ArgType,Direction>::PlainObject >
|
|
{
|
|
typedef Homogeneous<ArgType,Direction> XprType;
|
|
typedef typename XprType::PlainObject PlainObject;
|
|
typedef evaluator<PlainObject> Base;
|
|
|
|
EIGEN_DEVICE_FUNC explicit unary_evaluator(const XprType& op)
|
|
: Base(), m_temp(op)
|
|
{
|
|
internal::construct_at<Base>(this, m_temp);
|
|
}
|
|
|
|
protected:
|
|
PlainObject m_temp;
|
|
};
|
|
|
|
// dense = homogeneous
|
|
template< typename DstXprType, typename ArgType, typename Scalar>
|
|
struct Assignment<DstXprType, Homogeneous<ArgType,Vertical>, internal::assign_op<Scalar,typename ArgType::Scalar>, Dense2Dense>
|
|
{
|
|
typedef Homogeneous<ArgType,Vertical> SrcXprType;
|
|
EIGEN_DEVICE_FUNC static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<Scalar,typename ArgType::Scalar> &)
|
|
{
|
|
Index dstRows = src.rows();
|
|
Index dstCols = src.cols();
|
|
if((dst.rows()!=dstRows) || (dst.cols()!=dstCols))
|
|
dst.resize(dstRows, dstCols);
|
|
|
|
dst.template topRows<ArgType::RowsAtCompileTime>(src.nestedExpression().rows()) = src.nestedExpression();
|
|
dst.row(dst.rows()-1).setOnes();
|
|
}
|
|
};
|
|
|
|
// dense = homogeneous
|
|
template< typename DstXprType, typename ArgType, typename Scalar>
|
|
struct Assignment<DstXprType, Homogeneous<ArgType,Horizontal>, internal::assign_op<Scalar,typename ArgType::Scalar>, Dense2Dense>
|
|
{
|
|
typedef Homogeneous<ArgType,Horizontal> SrcXprType;
|
|
EIGEN_DEVICE_FUNC static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<Scalar,typename ArgType::Scalar> &)
|
|
{
|
|
Index dstRows = src.rows();
|
|
Index dstCols = src.cols();
|
|
if((dst.rows()!=dstRows) || (dst.cols()!=dstCols))
|
|
dst.resize(dstRows, dstCols);
|
|
|
|
dst.template leftCols<ArgType::ColsAtCompileTime>(src.nestedExpression().cols()) = src.nestedExpression();
|
|
dst.col(dst.cols()-1).setOnes();
|
|
}
|
|
};
|
|
|
|
template<typename LhsArg, typename Rhs, int ProductTag>
|
|
struct generic_product_impl<Homogeneous<LhsArg,Horizontal>, Rhs, HomogeneousShape, DenseShape, ProductTag>
|
|
{
|
|
template<typename Dest>
|
|
EIGEN_DEVICE_FUNC static void evalTo(Dest& dst, const Homogeneous<LhsArg,Horizontal>& lhs, const Rhs& rhs)
|
|
{
|
|
homogeneous_right_product_impl<Homogeneous<LhsArg,Horizontal>, Rhs>(lhs.nestedExpression(), rhs).evalTo(dst);
|
|
}
|
|
};
|
|
|
|
template<typename Lhs,typename Rhs>
|
|
struct homogeneous_right_product_refactoring_helper
|
|
{
|
|
enum {
|
|
Dim = Lhs::ColsAtCompileTime,
|
|
Rows = Lhs::RowsAtCompileTime
|
|
};
|
|
typedef typename Rhs::template ConstNRowsBlockXpr<Dim>::Type LinearBlockConst;
|
|
typedef typename remove_const<LinearBlockConst>::type LinearBlock;
|
|
typedef typename Rhs::ConstRowXpr ConstantColumn;
|
|
typedef Replicate<const ConstantColumn,Rows,1> ConstantBlock;
|
|
typedef Product<Lhs,LinearBlock,LazyProduct> LinearProduct;
|
|
typedef CwiseBinaryOp<internal::scalar_sum_op<typename Lhs::Scalar,typename Rhs::Scalar>, const LinearProduct, const ConstantBlock> Xpr;
|
|
};
|
|
|
|
template<typename Lhs, typename Rhs, int ProductTag>
|
|
struct product_evaluator<Product<Lhs, Rhs, LazyProduct>, ProductTag, HomogeneousShape, DenseShape>
|
|
: public evaluator<typename homogeneous_right_product_refactoring_helper<typename Lhs::NestedExpression,Rhs>::Xpr>
|
|
{
|
|
typedef Product<Lhs, Rhs, LazyProduct> XprType;
|
|
typedef homogeneous_right_product_refactoring_helper<typename Lhs::NestedExpression,Rhs> helper;
|
|
typedef typename helper::ConstantBlock ConstantBlock;
|
|
typedef typename helper::Xpr RefactoredXpr;
|
|
typedef evaluator<RefactoredXpr> Base;
|
|
|
|
EIGEN_DEVICE_FUNC explicit product_evaluator(const XprType& xpr)
|
|
: Base( xpr.lhs().nestedExpression() .lazyProduct( xpr.rhs().template topRows<helper::Dim>(xpr.lhs().nestedExpression().cols()) )
|
|
+ ConstantBlock(xpr.rhs().row(xpr.rhs().rows()-1),xpr.lhs().rows(), 1) )
|
|
{}
|
|
};
|
|
|
|
template<typename Lhs, typename RhsArg, int ProductTag>
|
|
struct generic_product_impl<Lhs, Homogeneous<RhsArg,Vertical>, DenseShape, HomogeneousShape, ProductTag>
|
|
{
|
|
template<typename Dest>
|
|
EIGEN_DEVICE_FUNC static void evalTo(Dest& dst, const Lhs& lhs, const Homogeneous<RhsArg,Vertical>& rhs)
|
|
{
|
|
homogeneous_left_product_impl<Homogeneous<RhsArg,Vertical>, Lhs>(lhs, rhs.nestedExpression()).evalTo(dst);
|
|
}
|
|
};
|
|
|
|
// TODO: the following specialization is to address a regression from 3.2 to 3.3
|
|
// In the future, this path should be optimized.
|
|
template<typename Lhs, typename RhsArg, int ProductTag>
|
|
struct generic_product_impl<Lhs, Homogeneous<RhsArg,Vertical>, TriangularShape, HomogeneousShape, ProductTag>
|
|
{
|
|
template<typename Dest>
|
|
static void evalTo(Dest& dst, const Lhs& lhs, const Homogeneous<RhsArg,Vertical>& rhs)
|
|
{
|
|
dst.noalias() = lhs * rhs.eval();
|
|
}
|
|
};
|
|
|
|
template<typename Lhs,typename Rhs>
|
|
struct homogeneous_left_product_refactoring_helper
|
|
{
|
|
enum {
|
|
Dim = Rhs::RowsAtCompileTime,
|
|
Cols = Rhs::ColsAtCompileTime
|
|
};
|
|
typedef typename Lhs::template ConstNColsBlockXpr<Dim>::Type LinearBlockConst;
|
|
typedef typename remove_const<LinearBlockConst>::type LinearBlock;
|
|
typedef typename Lhs::ConstColXpr ConstantColumn;
|
|
typedef Replicate<const ConstantColumn,1,Cols> ConstantBlock;
|
|
typedef Product<LinearBlock,Rhs,LazyProduct> LinearProduct;
|
|
typedef CwiseBinaryOp<internal::scalar_sum_op<typename Lhs::Scalar,typename Rhs::Scalar>, const LinearProduct, const ConstantBlock> Xpr;
|
|
};
|
|
|
|
template<typename Lhs, typename Rhs, int ProductTag>
|
|
struct product_evaluator<Product<Lhs, Rhs, LazyProduct>, ProductTag, DenseShape, HomogeneousShape>
|
|
: public evaluator<typename homogeneous_left_product_refactoring_helper<Lhs,typename Rhs::NestedExpression>::Xpr>
|
|
{
|
|
typedef Product<Lhs, Rhs, LazyProduct> XprType;
|
|
typedef homogeneous_left_product_refactoring_helper<Lhs,typename Rhs::NestedExpression> helper;
|
|
typedef typename helper::ConstantBlock ConstantBlock;
|
|
typedef typename helper::Xpr RefactoredXpr;
|
|
typedef evaluator<RefactoredXpr> Base;
|
|
|
|
EIGEN_DEVICE_FUNC explicit product_evaluator(const XprType& xpr)
|
|
: Base( xpr.lhs().template leftCols<helper::Dim>(xpr.rhs().nestedExpression().rows()) .lazyProduct( xpr.rhs().nestedExpression() )
|
|
+ ConstantBlock(xpr.lhs().col(xpr.lhs().cols()-1),1,xpr.rhs().cols()) )
|
|
{}
|
|
};
|
|
|
|
template<typename Scalar, int Dim, int Mode,int Options, typename RhsArg, int ProductTag>
|
|
struct generic_product_impl<Transform<Scalar,Dim,Mode,Options>, Homogeneous<RhsArg,Vertical>, DenseShape, HomogeneousShape, ProductTag>
|
|
{
|
|
typedef Transform<Scalar,Dim,Mode,Options> TransformType;
|
|
template<typename Dest>
|
|
EIGEN_DEVICE_FUNC static void evalTo(Dest& dst, const TransformType& lhs, const Homogeneous<RhsArg,Vertical>& rhs)
|
|
{
|
|
homogeneous_left_product_impl<Homogeneous<RhsArg,Vertical>, TransformType>(lhs, rhs.nestedExpression()).evalTo(dst);
|
|
}
|
|
};
|
|
|
|
template<typename ExpressionType, int Side, bool Transposed>
|
|
struct permutation_matrix_product<ExpressionType, Side, Transposed, HomogeneousShape>
|
|
: public permutation_matrix_product<ExpressionType, Side, Transposed, DenseShape>
|
|
{};
|
|
|
|
} // end namespace internal
|
|
|
|
} // end namespace Eigen
|
|
|
|
#endif // EIGEN_HOMOGENEOUS_H
|