Rasmus Munk Larsen cf12474a8b Optimize matrix*matrix and matrix*vector products when they correspond to inner products at runtime.
This speeds up inner products where the one or or both arguments is dynamic for small and medium-sized vectors (up to 32k).

name                           old time/op             new time/op   delta
BM_VecVecStatStat<float>/1     1.64ns ± 0%             1.64ns ± 0%     ~
BM_VecVecStatStat<float>/8     2.99ns ± 0%             2.99ns ± 0%     ~
BM_VecVecStatStat<float>/64    7.00ns ± 1%             7.04ns ± 0%   +0.66%
BM_VecVecStatStat<float>/512   61.6ns ± 0%             61.6ns ± 0%     ~
BM_VecVecStatStat<float>/4k     551ns ± 0%              553ns ± 1%   +0.26%
BM_VecVecStatStat<float>/32k   4.45µs ± 0%             4.45µs ± 0%     ~
BM_VecVecStatStat<float>/256k  77.9µs ± 0%             78.1µs ± 1%     ~
BM_VecVecStatStat<float>/1M     312µs ± 0%              312µs ± 1%     ~
BM_VecVecDynStat<float>/1      13.3ns ± 1%              4.6ns ± 0%  -65.35%
BM_VecVecDynStat<float>/8      14.4ns ± 0%              6.2ns ± 0%  -57.00%
BM_VecVecDynStat<float>/64     24.0ns ± 0%             10.2ns ± 3%  -57.57%
BM_VecVecDynStat<float>/512     138ns ± 0%               68ns ± 0%  -50.52%
BM_VecVecDynStat<float>/4k     1.11µs ± 0%             0.56µs ± 0%  -49.72%
BM_VecVecDynStat<float>/32k    8.89µs ± 0%             4.46µs ± 0%  -49.89%
BM_VecVecDynStat<float>/256k   78.2µs ± 0%             78.1µs ± 1%     ~
BM_VecVecDynStat<float>/1M      313µs ± 0%              312µs ± 1%     ~
BM_VecVecDynDyn<float>/1       10.4ns ± 0%             10.5ns ± 0%   +0.91%
BM_VecVecDynDyn<float>/8       12.0ns ± 3%             11.9ns ± 0%     ~
BM_VecVecDynDyn<float>/64      37.4ns ± 0%             19.6ns ± 1%  -47.57%
BM_VecVecDynDyn<float>/512      159ns ± 0%               81ns ± 0%  -49.07%
BM_VecVecDynDyn<float>/4k      1.13µs ± 0%             0.58µs ± 1%  -49.11%
BM_VecVecDynDyn<float>/32k     8.91µs ± 0%             5.06µs ±12%  -43.23%
BM_VecVecDynDyn<float>/256k    78.2µs ± 0%             78.2µs ± 1%     ~
BM_VecVecDynDyn<float>/1M       313µs ± 0%              312µs ± 1%     ~
2020-11-12 18:02:37 +00:00
2020-09-22 00:26:23 +00:00
2018-03-11 10:01:44 -04:00
2020-10-14 01:56:42 +00:00
2012-07-15 10:20:59 -04:00

Eigen is a C++ template library for linear algebra: matrices, vectors, numerical solvers, and related algorithms.

For more information go to http://eigen.tuxfamily.org/.

For pull request, bug reports, and feature requests, go to https://gitlab.com/libeigen/eigen.

Description
No description provided
Readme MPL-2.0 147 MiB
Languages
C++ 85.1%
Fortran 8.5%
C 2.8%
CMake 1.9%
Cuda 1.2%
Other 0.4%