mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-05-29 09:36:55 +08:00

- clean the *_PUBLIC_INTERFACE_* - update Diagonal, ReturnByValue, ForceAlignedAccess, UnaryView, etc. to support array - many other small stuff
581 lines
21 KiB
C++
581 lines
21 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2008-2010 Gael Guennebaud <g.gael@free.fr>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#ifndef EIGEN_SPARSEPRODUCT_H
|
|
#define EIGEN_SPARSEPRODUCT_H
|
|
|
|
template<typename Lhs, typename Rhs>
|
|
struct SparseProductReturnType
|
|
{
|
|
typedef typename ei_traits<Lhs>::Scalar Scalar;
|
|
enum {
|
|
LhsRowMajor = ei_traits<Lhs>::Flags & RowMajorBit,
|
|
RhsRowMajor = ei_traits<Rhs>::Flags & RowMajorBit,
|
|
TransposeRhs = /*false,*/ (!LhsRowMajor) && RhsRowMajor,
|
|
TransposeLhs = /*false*/ LhsRowMajor && (!RhsRowMajor)
|
|
};
|
|
|
|
// FIXME if we transpose let's evaluate to a LinkedVectorMatrix since it is the
|
|
// type of the temporary to perform the transpose op
|
|
typedef typename ei_meta_if<TransposeLhs,
|
|
SparseMatrix<Scalar,0>,
|
|
const typename ei_nested<Lhs,Rhs::RowsAtCompileTime>::type>::ret LhsNested;
|
|
|
|
typedef typename ei_meta_if<TransposeRhs,
|
|
SparseMatrix<Scalar,0>,
|
|
const typename ei_nested<Rhs,Lhs::RowsAtCompileTime>::type>::ret RhsNested;
|
|
|
|
typedef SparseProduct<LhsNested, RhsNested> Type;
|
|
};
|
|
|
|
template<typename LhsNested, typename RhsNested>
|
|
struct ei_traits<SparseProduct<LhsNested, RhsNested> >
|
|
{
|
|
typedef DenseStorageMatrix DenseStorageType;
|
|
// clean the nested types:
|
|
typedef typename ei_cleantype<LhsNested>::type _LhsNested;
|
|
typedef typename ei_cleantype<RhsNested>::type _RhsNested;
|
|
typedef typename _LhsNested::Scalar Scalar;
|
|
|
|
enum {
|
|
LhsCoeffReadCost = _LhsNested::CoeffReadCost,
|
|
RhsCoeffReadCost = _RhsNested::CoeffReadCost,
|
|
LhsFlags = _LhsNested::Flags,
|
|
RhsFlags = _RhsNested::Flags,
|
|
|
|
RowsAtCompileTime = _LhsNested::RowsAtCompileTime,
|
|
ColsAtCompileTime = _RhsNested::ColsAtCompileTime,
|
|
InnerSize = EIGEN_ENUM_MIN(_LhsNested::ColsAtCompileTime, _RhsNested::RowsAtCompileTime),
|
|
|
|
MaxRowsAtCompileTime = _LhsNested::MaxRowsAtCompileTime,
|
|
MaxColsAtCompileTime = _RhsNested::MaxColsAtCompileTime,
|
|
|
|
EvalToRowMajor = (RhsFlags & LhsFlags & RowMajorBit),
|
|
|
|
RemovedBits = ~(EvalToRowMajor ? 0 : RowMajorBit),
|
|
|
|
Flags = (int(LhsFlags | RhsFlags) & HereditaryBits & RemovedBits)
|
|
| EvalBeforeAssigningBit
|
|
| EvalBeforeNestingBit,
|
|
|
|
CoeffReadCost = Dynamic
|
|
};
|
|
|
|
typedef Sparse StorageType;
|
|
|
|
typedef SparseMatrixBase<SparseProduct<LhsNested, RhsNested> > Base;
|
|
};
|
|
|
|
template<typename LhsNested, typename RhsNested>
|
|
class SparseProduct : ei_no_assignment_operator,
|
|
public ei_traits<SparseProduct<LhsNested, RhsNested> >::Base
|
|
{
|
|
public:
|
|
|
|
typedef typename ei_traits<SparseProduct<LhsNested, RhsNested> >::Base Base;
|
|
EIGEN_DENSE_PUBLIC_INTERFACE(SparseProduct)
|
|
|
|
private:
|
|
|
|
typedef typename ei_traits<SparseProduct>::_LhsNested _LhsNested;
|
|
typedef typename ei_traits<SparseProduct>::_RhsNested _RhsNested;
|
|
|
|
public:
|
|
|
|
template<typename Lhs, typename Rhs>
|
|
EIGEN_STRONG_INLINE SparseProduct(const Lhs& lhs, const Rhs& rhs)
|
|
: m_lhs(lhs), m_rhs(rhs)
|
|
{
|
|
ei_assert(lhs.cols() == rhs.rows());
|
|
|
|
enum {
|
|
ProductIsValid = _LhsNested::ColsAtCompileTime==Dynamic
|
|
|| _RhsNested::RowsAtCompileTime==Dynamic
|
|
|| int(_LhsNested::ColsAtCompileTime)==int(_RhsNested::RowsAtCompileTime),
|
|
AreVectors = _LhsNested::IsVectorAtCompileTime && _RhsNested::IsVectorAtCompileTime,
|
|
SameSizes = EIGEN_PREDICATE_SAME_MATRIX_SIZE(_LhsNested,_RhsNested)
|
|
};
|
|
// note to the lost user:
|
|
// * for a dot product use: v1.dot(v2)
|
|
// * for a coeff-wise product use: v1.cwise()*v2
|
|
EIGEN_STATIC_ASSERT(ProductIsValid || !(AreVectors && SameSizes),
|
|
INVALID_VECTOR_VECTOR_PRODUCT__IF_YOU_WANTED_A_DOT_OR_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTIONS)
|
|
EIGEN_STATIC_ASSERT(ProductIsValid || !(SameSizes && !AreVectors),
|
|
INVALID_MATRIX_PRODUCT__IF_YOU_WANTED_A_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTION)
|
|
EIGEN_STATIC_ASSERT(ProductIsValid || SameSizes, INVALID_MATRIX_PRODUCT)
|
|
}
|
|
|
|
EIGEN_STRONG_INLINE int rows() const { return m_lhs.rows(); }
|
|
EIGEN_STRONG_INLINE int cols() const { return m_rhs.cols(); }
|
|
|
|
EIGEN_STRONG_INLINE const _LhsNested& lhs() const { return m_lhs; }
|
|
EIGEN_STRONG_INLINE const _RhsNested& rhs() const { return m_rhs; }
|
|
|
|
protected:
|
|
LhsNested m_lhs;
|
|
RhsNested m_rhs;
|
|
};
|
|
|
|
template<typename Lhs, typename Rhs, typename ResultType>
|
|
static void ei_sparse_product_impl2(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
|
{
|
|
typedef typename ei_traits<typename ei_cleantype<Lhs>::type>::Scalar Scalar;
|
|
|
|
// make sure to call innerSize/outerSize since we fake the storage order.
|
|
int rows = lhs.innerSize();
|
|
int cols = rhs.outerSize();
|
|
ei_assert(lhs.outerSize() == rhs.innerSize());
|
|
|
|
std::vector<bool> mask(rows,false);
|
|
Matrix<Scalar,Dynamic,1> values(rows);
|
|
Matrix<int,Dynamic,1> indices(rows);
|
|
|
|
// estimate the number of non zero entries
|
|
float ratioLhs = float(lhs.nonZeros())/(float(lhs.rows())*float(lhs.cols()));
|
|
float avgNnzPerRhsColumn = float(rhs.nonZeros())/float(cols);
|
|
float ratioRes = std::min(ratioLhs * avgNnzPerRhsColumn, 1.f);
|
|
|
|
int t200 = rows/(log2(200)*1.39);
|
|
int t = (rows*100)/139;
|
|
|
|
res.resize(rows, cols);
|
|
res.reserve(int(ratioRes*rows*cols));
|
|
// we compute each column of the result, one after the other
|
|
for (int j=0; j<cols; ++j)
|
|
{
|
|
|
|
res.startVec(j);
|
|
int nnz = 0;
|
|
for (typename Rhs::InnerIterator rhsIt(rhs, j); rhsIt; ++rhsIt)
|
|
{
|
|
Scalar y = rhsIt.value();
|
|
int k = rhsIt.index();
|
|
for (typename Lhs::InnerIterator lhsIt(lhs, k); lhsIt; ++lhsIt)
|
|
{
|
|
int i = lhsIt.index();
|
|
Scalar x = lhsIt.value();
|
|
if(!mask[i])
|
|
{
|
|
mask[i] = true;
|
|
// values[i] = x * y;
|
|
// indices[nnz] = i;
|
|
++nnz;
|
|
}
|
|
else
|
|
values[i] += x * y;
|
|
}
|
|
}
|
|
// FIXME reserve nnz non zeros
|
|
// FIXME implement fast sort algorithms for very small nnz
|
|
// if the result is sparse enough => use a quick sort
|
|
// otherwise => loop through the entire vector
|
|
// In order to avoid to perform an expensive log2 when the
|
|
// result is clearly very sparse we use a linear bound up to 200.
|
|
// if((nnz<200 && nnz<t200) || nnz * log2(nnz) < t)
|
|
// {
|
|
// if(nnz>1) std::sort(indices.data(),indices.data()+nnz);
|
|
// for(int k=0; k<nnz; ++k)
|
|
// {
|
|
// int i = indices[k];
|
|
// res.insertBackNoCheck(j,i) = values[i];
|
|
// mask[i] = false;
|
|
// }
|
|
// }
|
|
// else
|
|
// {
|
|
// // dense path
|
|
// for(int i=0; i<rows; ++i)
|
|
// {
|
|
// if(mask[i])
|
|
// {
|
|
// mask[i] = false;
|
|
// res.insertBackNoCheck(j,i) = values[i];
|
|
// }
|
|
// }
|
|
// }
|
|
|
|
}
|
|
res.finalize();
|
|
}
|
|
|
|
// perform a pseudo in-place sparse * sparse product assuming all matrices are col major
|
|
template<typename Lhs, typename Rhs, typename ResultType>
|
|
static void ei_sparse_product_impl(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
|
{
|
|
// return ei_sparse_product_impl2(lhs,rhs,res);
|
|
|
|
typedef typename ei_traits<typename ei_cleantype<Lhs>::type>::Scalar Scalar;
|
|
|
|
// make sure to call innerSize/outerSize since we fake the storage order.
|
|
int rows = lhs.innerSize();
|
|
int cols = rhs.outerSize();
|
|
//int size = lhs.outerSize();
|
|
ei_assert(lhs.outerSize() == rhs.innerSize());
|
|
|
|
// allocate a temporary buffer
|
|
AmbiVector<Scalar> tempVector(rows);
|
|
|
|
// estimate the number of non zero entries
|
|
float ratioLhs = float(lhs.nonZeros())/(float(lhs.rows())*float(lhs.cols()));
|
|
float avgNnzPerRhsColumn = float(rhs.nonZeros())/float(cols);
|
|
float ratioRes = std::min(ratioLhs * avgNnzPerRhsColumn, 1.f);
|
|
|
|
res.resize(rows, cols);
|
|
res.reserve(int(ratioRes*rows*cols));
|
|
for (int j=0; j<cols; ++j)
|
|
{
|
|
// let's do a more accurate determination of the nnz ratio for the current column j of res
|
|
//float ratioColRes = std::min(ratioLhs * rhs.innerNonZeros(j), 1.f);
|
|
// FIXME find a nice way to get the number of nonzeros of a sub matrix (here an inner vector)
|
|
float ratioColRes = ratioRes;
|
|
tempVector.init(ratioColRes);
|
|
tempVector.setZero();
|
|
for (typename Rhs::InnerIterator rhsIt(rhs, j); rhsIt; ++rhsIt)
|
|
{
|
|
// FIXME should be written like this: tmp += rhsIt.value() * lhs.col(rhsIt.index())
|
|
tempVector.restart();
|
|
Scalar x = rhsIt.value();
|
|
for (typename Lhs::InnerIterator lhsIt(lhs, rhsIt.index()); lhsIt; ++lhsIt)
|
|
{
|
|
tempVector.coeffRef(lhsIt.index()) += lhsIt.value() * x;
|
|
}
|
|
}
|
|
res.startVec(j);
|
|
for (typename AmbiVector<Scalar>::Iterator it(tempVector); it; ++it)
|
|
res.insertBack(j,it.index()) = it.value();
|
|
}
|
|
res.finalize();
|
|
}
|
|
|
|
template<typename Lhs, typename Rhs, typename ResultType,
|
|
int LhsStorageOrder = ei_traits<Lhs>::Flags&RowMajorBit,
|
|
int RhsStorageOrder = ei_traits<Rhs>::Flags&RowMajorBit,
|
|
int ResStorageOrder = ei_traits<ResultType>::Flags&RowMajorBit>
|
|
struct ei_sparse_product_selector;
|
|
|
|
template<typename Lhs, typename Rhs, typename ResultType>
|
|
struct ei_sparse_product_selector<Lhs,Rhs,ResultType,ColMajor,ColMajor,ColMajor>
|
|
{
|
|
typedef typename ei_traits<typename ei_cleantype<Lhs>::type>::Scalar Scalar;
|
|
|
|
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
|
{
|
|
// std::cerr << __LINE__ << "\n";
|
|
typename ei_cleantype<ResultType>::type _res(res.rows(), res.cols());
|
|
ei_sparse_product_impl<Lhs,Rhs,ResultType>(lhs, rhs, _res);
|
|
res.swap(_res);
|
|
}
|
|
};
|
|
|
|
template<typename Lhs, typename Rhs, typename ResultType>
|
|
struct ei_sparse_product_selector<Lhs,Rhs,ResultType,ColMajor,ColMajor,RowMajor>
|
|
{
|
|
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
|
{
|
|
// std::cerr << __LINE__ << "\n";
|
|
// we need a col-major matrix to hold the result
|
|
typedef SparseMatrix<typename ResultType::Scalar> SparseTemporaryType;
|
|
SparseTemporaryType _res(res.rows(), res.cols());
|
|
ei_sparse_product_impl<Lhs,Rhs,SparseTemporaryType>(lhs, rhs, _res);
|
|
res = _res;
|
|
}
|
|
};
|
|
|
|
template<typename Lhs, typename Rhs, typename ResultType>
|
|
struct ei_sparse_product_selector<Lhs,Rhs,ResultType,RowMajor,RowMajor,RowMajor>
|
|
{
|
|
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
|
{
|
|
// std::cerr << __LINE__ << "\n";
|
|
// let's transpose the product to get a column x column product
|
|
typename ei_cleantype<ResultType>::type _res(res.rows(), res.cols());
|
|
ei_sparse_product_impl<Rhs,Lhs,ResultType>(rhs, lhs, _res);
|
|
res.swap(_res);
|
|
}
|
|
};
|
|
|
|
template<typename Lhs, typename Rhs, typename ResultType>
|
|
struct ei_sparse_product_selector<Lhs,Rhs,ResultType,RowMajor,RowMajor,ColMajor>
|
|
{
|
|
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
|
{
|
|
// std::cerr << "here...\n";
|
|
typedef SparseMatrix<typename ResultType::Scalar,ColMajor> ColMajorMatrix;
|
|
ColMajorMatrix colLhs(lhs);
|
|
ColMajorMatrix colRhs(rhs);
|
|
// std::cerr << "more...\n";
|
|
ei_sparse_product_impl<ColMajorMatrix,ColMajorMatrix,ResultType>(colLhs, colRhs, res);
|
|
// std::cerr << "OK.\n";
|
|
|
|
// let's transpose the product to get a column x column product
|
|
|
|
// typedef SparseMatrix<typename ResultType::Scalar> SparseTemporaryType;
|
|
// SparseTemporaryType _res(res.cols(), res.rows());
|
|
// ei_sparse_product_impl<Rhs,Lhs,SparseTemporaryType>(rhs, lhs, _res);
|
|
// res = _res.transpose();
|
|
}
|
|
};
|
|
|
|
// NOTE the 2 others cases (col row *) must never occurs since they are caught
|
|
// by ProductReturnType which transform it to (col col *) by evaluating rhs.
|
|
|
|
|
|
// sparse = sparse * sparse
|
|
template<typename Derived>
|
|
template<typename Lhs, typename Rhs>
|
|
inline Derived& SparseMatrixBase<Derived>::operator=(const SparseProduct<Lhs,Rhs>& product)
|
|
{
|
|
// std::cerr << "there..." << typeid(Lhs).name() << " " << typeid(Lhs).name() << " " << (Derived::Flags&&RowMajorBit) << "\n";
|
|
ei_sparse_product_selector<
|
|
typename ei_cleantype<Lhs>::type,
|
|
typename ei_cleantype<Rhs>::type,
|
|
Derived>::run(product.lhs(),product.rhs(),derived());
|
|
return derived();
|
|
}
|
|
|
|
|
|
template<typename Lhs, typename Rhs, typename ResultType,
|
|
int LhsStorageOrder = ei_traits<Lhs>::Flags&RowMajorBit,
|
|
int RhsStorageOrder = ei_traits<Rhs>::Flags&RowMajorBit,
|
|
int ResStorageOrder = ei_traits<ResultType>::Flags&RowMajorBit>
|
|
struct ei_sparse_product_selector2;
|
|
|
|
template<typename Lhs, typename Rhs, typename ResultType>
|
|
struct ei_sparse_product_selector2<Lhs,Rhs,ResultType,ColMajor,ColMajor,ColMajor>
|
|
{
|
|
typedef typename ei_traits<typename ei_cleantype<Lhs>::type>::Scalar Scalar;
|
|
|
|
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
|
{
|
|
ei_sparse_product_impl2<Lhs,Rhs,ResultType>(lhs, rhs, res);
|
|
}
|
|
};
|
|
|
|
template<typename Lhs, typename Rhs, typename ResultType>
|
|
struct ei_sparse_product_selector2<Lhs,Rhs,ResultType,RowMajor,ColMajor,ColMajor>
|
|
{
|
|
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
|
{
|
|
// typedef SparseMatrix<typename ResultType::Scalar,RowMajor> RowMajorMatrix;
|
|
// RowMajorMatrix rhsRow = rhs;
|
|
// RowMajorMatrix resRow(res.rows(), res.cols());
|
|
// ei_sparse_product_impl2<RowMajorMatrix,Lhs,RowMajorMatrix>(rhsRow, lhs, resRow);
|
|
// res = resRow;
|
|
}
|
|
};
|
|
|
|
template<typename Lhs, typename Rhs, typename ResultType>
|
|
struct ei_sparse_product_selector2<Lhs,Rhs,ResultType,ColMajor,RowMajor,ColMajor>
|
|
{
|
|
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
|
{
|
|
typedef SparseMatrix<typename ResultType::Scalar,RowMajor> RowMajorMatrix;
|
|
RowMajorMatrix lhsRow = lhs;
|
|
RowMajorMatrix resRow(res.rows(), res.cols());
|
|
ei_sparse_product_impl2<Rhs,RowMajorMatrix,RowMajorMatrix>(rhs, lhsRow, resRow);
|
|
res = resRow;
|
|
}
|
|
};
|
|
|
|
template<typename Lhs, typename Rhs, typename ResultType>
|
|
struct ei_sparse_product_selector2<Lhs,Rhs,ResultType,RowMajor,RowMajor,ColMajor>
|
|
{
|
|
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
|
{
|
|
typedef SparseMatrix<typename ResultType::Scalar,RowMajor> RowMajorMatrix;
|
|
RowMajorMatrix resRow(res.rows(), res.cols());
|
|
ei_sparse_product_impl2<Rhs,Lhs,RowMajorMatrix>(rhs, lhs, resRow);
|
|
res = resRow;
|
|
}
|
|
};
|
|
|
|
|
|
template<typename Lhs, typename Rhs, typename ResultType>
|
|
struct ei_sparse_product_selector2<Lhs,Rhs,ResultType,ColMajor,ColMajor,RowMajor>
|
|
{
|
|
typedef typename ei_traits<typename ei_cleantype<Lhs>::type>::Scalar Scalar;
|
|
|
|
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
|
{
|
|
typedef SparseMatrix<typename ResultType::Scalar,ColMajor> ColMajorMatrix;
|
|
ColMajorMatrix resCol(res.rows(), res.cols());
|
|
ei_sparse_product_impl2<Lhs,Rhs,ColMajorMatrix>(lhs, rhs, resCol);
|
|
res = resCol;
|
|
}
|
|
};
|
|
|
|
template<typename Lhs, typename Rhs, typename ResultType>
|
|
struct ei_sparse_product_selector2<Lhs,Rhs,ResultType,RowMajor,ColMajor,RowMajor>
|
|
{
|
|
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
|
{
|
|
typedef SparseMatrix<typename ResultType::Scalar,ColMajor> ColMajorMatrix;
|
|
ColMajorMatrix lhsCol = lhs;
|
|
ColMajorMatrix resCol(res.rows(), res.cols());
|
|
ei_sparse_product_impl2<ColMajorMatrix,Rhs,ColMajorMatrix>(lhsCol, rhs, resCol);
|
|
res = resCol;
|
|
}
|
|
};
|
|
|
|
template<typename Lhs, typename Rhs, typename ResultType>
|
|
struct ei_sparse_product_selector2<Lhs,Rhs,ResultType,ColMajor,RowMajor,RowMajor>
|
|
{
|
|
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
|
{
|
|
typedef SparseMatrix<typename ResultType::Scalar,ColMajor> ColMajorMatrix;
|
|
ColMajorMatrix rhsCol = rhs;
|
|
ColMajorMatrix resCol(res.rows(), res.cols());
|
|
ei_sparse_product_impl2<Lhs,ColMajorMatrix,ColMajorMatrix>(lhs, rhsCol, resCol);
|
|
res = resCol;
|
|
}
|
|
};
|
|
|
|
template<typename Lhs, typename Rhs, typename ResultType>
|
|
struct ei_sparse_product_selector2<Lhs,Rhs,ResultType,RowMajor,RowMajor,RowMajor>
|
|
{
|
|
static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res)
|
|
{
|
|
typedef SparseMatrix<typename ResultType::Scalar,ColMajor> ColMajorMatrix;
|
|
// ColMajorMatrix lhsTr(lhs);
|
|
// ColMajorMatrix rhsTr(rhs);
|
|
// ColMajorMatrix aux(res.rows(), res.cols());
|
|
// ei_sparse_product_impl2<Rhs,Lhs,ColMajorMatrix>(rhs, lhs, aux);
|
|
// // ColMajorMatrix aux2 = aux.transpose();
|
|
// res = aux;
|
|
typedef SparseMatrix<typename ResultType::Scalar,ColMajor> ColMajorMatrix;
|
|
ColMajorMatrix lhsCol(lhs);
|
|
ColMajorMatrix rhsCol(rhs);
|
|
ColMajorMatrix resCol(res.rows(), res.cols());
|
|
ei_sparse_product_impl2<ColMajorMatrix,ColMajorMatrix,ColMajorMatrix>(lhsCol, rhsCol, resCol);
|
|
res = resCol;
|
|
}
|
|
};
|
|
|
|
template<typename Derived>
|
|
template<typename Lhs, typename Rhs>
|
|
inline void SparseMatrixBase<Derived>::_experimentalNewProduct(const Lhs& lhs, const Rhs& rhs)
|
|
{
|
|
//derived().resize(lhs.rows(), rhs.cols());
|
|
ei_sparse_product_selector2<
|
|
typename ei_cleantype<Lhs>::type,
|
|
typename ei_cleantype<Rhs>::type,
|
|
Derived>::run(lhs,rhs,derived());
|
|
}
|
|
|
|
|
|
|
|
template<typename Lhs, typename Rhs>
|
|
struct ei_traits<SparseTimeDenseProduct<Lhs,Rhs> >
|
|
: ei_traits<ProductBase<SparseTimeDenseProduct<Lhs,Rhs>, Lhs, Rhs> >
|
|
{
|
|
typedef Dense StorageType;
|
|
typedef DenseStorageMatrix DenseStorageType;
|
|
};
|
|
|
|
template<typename Lhs, typename Rhs>
|
|
class SparseTimeDenseProduct
|
|
: public ProductBase<SparseTimeDenseProduct<Lhs,Rhs>, Lhs, Rhs>
|
|
{
|
|
public:
|
|
EIGEN_PRODUCT_PUBLIC_INTERFACE(SparseTimeDenseProduct)
|
|
|
|
SparseTimeDenseProduct(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs)
|
|
{}
|
|
|
|
template<typename Dest> void scaleAndAddTo(Dest& dest, Scalar alpha) const
|
|
{
|
|
typedef typename ei_cleantype<Lhs>::type _Lhs;
|
|
typedef typename ei_cleantype<Rhs>::type _Rhs;
|
|
typedef typename _Lhs::InnerIterator LhsInnerIterator;
|
|
enum { LhsIsRowMajor = (_Lhs::Flags&RowMajorBit)==RowMajorBit };
|
|
for(int j=0; j<m_lhs.outerSize(); ++j)
|
|
{
|
|
typename Rhs::Scalar rhs_j = alpha * m_rhs.coeff(j,0);
|
|
Block<Dest,1,Dest::ColsAtCompileTime> dest_j(dest.row(LhsIsRowMajor ? j : 0));
|
|
for(LhsInnerIterator it(m_lhs,j); it ;++it)
|
|
{
|
|
if(LhsIsRowMajor) dest_j += (alpha*it.value()) * m_rhs.row(it.index());
|
|
else if(Rhs::ColsAtCompileTime==1) dest.coeffRef(it.index()) += it.value() * rhs_j;
|
|
else dest.row(it.index()) += (alpha*it.value()) * m_rhs.row(j);
|
|
}
|
|
}
|
|
}
|
|
|
|
private:
|
|
SparseTimeDenseProduct& operator=(const SparseTimeDenseProduct&);
|
|
};
|
|
|
|
|
|
// dense = dense * sparse
|
|
template<typename Lhs, typename Rhs>
|
|
struct ei_traits<DenseTimeSparseProduct<Lhs,Rhs> >
|
|
: ei_traits<ProductBase<DenseTimeSparseProduct<Lhs,Rhs>, Lhs, Rhs> >
|
|
{
|
|
typedef Dense StorageType;
|
|
};
|
|
|
|
template<typename Lhs, typename Rhs>
|
|
class DenseTimeSparseProduct
|
|
: public ProductBase<DenseTimeSparseProduct<Lhs,Rhs>, Lhs, Rhs>
|
|
{
|
|
public:
|
|
EIGEN_PRODUCT_PUBLIC_INTERFACE(DenseTimeSparseProduct)
|
|
|
|
DenseTimeSparseProduct(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs)
|
|
{}
|
|
|
|
template<typename Dest> void scaleAndAddTo(Dest& dest, Scalar alpha) const
|
|
{
|
|
typedef typename ei_cleantype<Rhs>::type _Rhs;
|
|
typedef typename _Rhs::InnerIterator RhsInnerIterator;
|
|
enum { RhsIsRowMajor = (_Rhs::Flags&RowMajorBit)==RowMajorBit };
|
|
for(int j=0; j<m_rhs.outerSize(); ++j)
|
|
for(RhsInnerIterator i(m_rhs,j); i; ++i)
|
|
dest.col(RhsIsRowMajor ? i.index() : j) += (alpha*i.value()) * m_lhs.col(RhsIsRowMajor ? j : i.index());
|
|
}
|
|
|
|
private:
|
|
DenseTimeSparseProduct& operator=(const DenseTimeSparseProduct&);
|
|
};
|
|
|
|
// sparse * sparse
|
|
template<typename Derived>
|
|
template<typename OtherDerived>
|
|
EIGEN_STRONG_INLINE const typename SparseProductReturnType<Derived,OtherDerived>::Type
|
|
SparseMatrixBase<Derived>::operator*(const SparseMatrixBase<OtherDerived> &other) const
|
|
{
|
|
return typename SparseProductReturnType<Derived,OtherDerived>::Type(derived(), other.derived());
|
|
}
|
|
|
|
// sparse * dense
|
|
template<typename Derived>
|
|
template<typename OtherDerived>
|
|
EIGEN_STRONG_INLINE const SparseTimeDenseProduct<Derived,OtherDerived>
|
|
SparseMatrixBase<Derived>::operator*(const MatrixBase<OtherDerived> &other) const
|
|
{
|
|
return SparseTimeDenseProduct<Derived,OtherDerived>(derived(), other.derived());
|
|
}
|
|
|
|
#endif // EIGEN_SPARSEPRODUCT_H
|