mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-04-23 10:09:36 +08:00
160 lines
5.7 KiB
C++
160 lines
5.7 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2016
|
|
// Mehdi Goli Codeplay Software Ltd.
|
|
// Ralph Potter Codeplay Software Ltd.
|
|
// Luke Iwanski Codeplay Software Ltd.
|
|
// Contact: <eigen@codeplay.com>
|
|
// Benoit Steiner <benoit.steiner.goog@gmail.com>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
|
|
#define EIGEN_TEST_NO_LONGDOUBLE
|
|
#define EIGEN_TEST_NO_COMPLEX
|
|
#define EIGEN_TEST_FUNC cxx11_tensor_sycl
|
|
#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int
|
|
#define EIGEN_USE_SYCL
|
|
|
|
#include "main.h"
|
|
#include <unsupported/Eigen/CXX11/Tensor>
|
|
|
|
using Eigen::array;
|
|
using Eigen::SyclDevice;
|
|
using Eigen::Tensor;
|
|
using Eigen::TensorMap;
|
|
|
|
void test_sycl_cpu(const Eigen::SyclDevice &sycl_device) {
|
|
|
|
int sizeDim1 = 100;
|
|
int sizeDim2 = 100;
|
|
int sizeDim3 = 100;
|
|
array<int, 3> tensorRange = {{sizeDim1, sizeDim2, sizeDim3}};
|
|
Tensor<float, 3> in1(tensorRange);
|
|
Tensor<float, 3> in2(tensorRange);
|
|
Tensor<float, 3> in3(tensorRange);
|
|
Tensor<float, 3> out(tensorRange);
|
|
|
|
in2 = in2.random();
|
|
in3 = in3.random();
|
|
|
|
float * gpu_in1_data = static_cast<float*>(sycl_device.allocate(in1.dimensions().TotalSize()*sizeof(float)));
|
|
float * gpu_in2_data = static_cast<float*>(sycl_device.allocate(in2.dimensions().TotalSize()*sizeof(float)));
|
|
float * gpu_in3_data = static_cast<float*>(sycl_device.allocate(in3.dimensions().TotalSize()*sizeof(float)));
|
|
float * gpu_out_data = static_cast<float*>(sycl_device.allocate(out.dimensions().TotalSize()*sizeof(float)));
|
|
|
|
TensorMap<Tensor<float, 3>> gpu_in1(gpu_in1_data, tensorRange);
|
|
TensorMap<Tensor<float, 3>> gpu_in2(gpu_in2_data, tensorRange);
|
|
TensorMap<Tensor<float, 3>> gpu_in3(gpu_in3_data, tensorRange);
|
|
TensorMap<Tensor<float, 3>> gpu_out(gpu_out_data, tensorRange);
|
|
|
|
/// a=1.2f
|
|
gpu_in1.device(sycl_device) = gpu_in1.constant(1.2f);
|
|
sycl_device.memcpyDeviceToHost(in1.data(), gpu_in1_data ,(in1.dimensions().TotalSize())*sizeof(float));
|
|
for (int i = 0; i < sizeDim1; ++i) {
|
|
for (int j = 0; j < sizeDim2; ++j) {
|
|
for (int k = 0; k < sizeDim3; ++k) {
|
|
VERIFY_IS_APPROX(in1(i,j,k), 1.2f);
|
|
}
|
|
}
|
|
}
|
|
printf("a=1.2f Test passed\n");
|
|
|
|
/// a=b*1.2f
|
|
gpu_out.device(sycl_device) = gpu_in1 * 1.2f;
|
|
sycl_device.memcpyDeviceToHost(out.data(), gpu_out_data ,(out.dimensions().TotalSize())*sizeof(float));
|
|
for (int i = 0; i < sizeDim1; ++i) {
|
|
for (int j = 0; j < sizeDim2; ++j) {
|
|
for (int k = 0; k < sizeDim3; ++k) {
|
|
VERIFY_IS_APPROX(out(i,j,k),
|
|
in1(i,j,k) * 1.2f);
|
|
}
|
|
}
|
|
}
|
|
printf("a=b*1.2f Test Passed\n");
|
|
|
|
/// c=a*b
|
|
sycl_device.memcpyHostToDevice(gpu_in2_data, in2.data(),(in2.dimensions().TotalSize())*sizeof(float));
|
|
gpu_out.device(sycl_device) = gpu_in1 * gpu_in2;
|
|
sycl_device.memcpyDeviceToHost(out.data(), gpu_out_data,(out.dimensions().TotalSize())*sizeof(float));
|
|
for (int i = 0; i < sizeDim1; ++i) {
|
|
for (int j = 0; j < sizeDim2; ++j) {
|
|
for (int k = 0; k < sizeDim3; ++k) {
|
|
VERIFY_IS_APPROX(out(i,j,k),
|
|
in1(i,j,k) *
|
|
in2(i,j,k));
|
|
}
|
|
}
|
|
}
|
|
printf("c=a*b Test Passed\n");
|
|
|
|
/// c=a+b
|
|
gpu_out.device(sycl_device) = gpu_in1 + gpu_in2;
|
|
sycl_device.memcpyDeviceToHost(out.data(), gpu_out_data,(out.dimensions().TotalSize())*sizeof(float));
|
|
for (int i = 0; i < sizeDim1; ++i) {
|
|
for (int j = 0; j < sizeDim2; ++j) {
|
|
for (int k = 0; k < sizeDim3; ++k) {
|
|
VERIFY_IS_APPROX(out(i,j,k),
|
|
in1(i,j,k) +
|
|
in2(i,j,k));
|
|
}
|
|
}
|
|
}
|
|
printf("c=a+b Test Passed\n");
|
|
|
|
/// c=a*a
|
|
gpu_out.device(sycl_device) = gpu_in1 * gpu_in1;
|
|
sycl_device.memcpyDeviceToHost(out.data(), gpu_out_data,(out.dimensions().TotalSize())*sizeof(float));
|
|
for (int i = 0; i < sizeDim1; ++i) {
|
|
for (int j = 0; j < sizeDim2; ++j) {
|
|
for (int k = 0; k < sizeDim3; ++k) {
|
|
VERIFY_IS_APPROX(out(i,j,k),
|
|
in1(i,j,k) *
|
|
in1(i,j,k));
|
|
}
|
|
}
|
|
}
|
|
printf("c= a*a Test Passed\n");
|
|
|
|
//a*3.14f + b*2.7f
|
|
gpu_out.device(sycl_device) = gpu_in1 * gpu_in1.constant(3.14f) + gpu_in2 * gpu_in2.constant(2.7f);
|
|
sycl_device.memcpyDeviceToHost(out.data(),gpu_out_data,(out.dimensions().TotalSize())*sizeof(float));
|
|
for (int i = 0; i < sizeDim1; ++i) {
|
|
for (int j = 0; j < sizeDim2; ++j) {
|
|
for (int k = 0; k < sizeDim3; ++k) {
|
|
VERIFY_IS_APPROX(out(i,j,k),
|
|
in1(i,j,k) * 3.14f
|
|
+ in2(i,j,k) * 2.7f);
|
|
}
|
|
}
|
|
}
|
|
printf("a*3.14f + b*2.7f Test Passed\n");
|
|
|
|
///d= (a>0.5? b:c)
|
|
sycl_device.memcpyHostToDevice(gpu_in3_data, in3.data(),(in3.dimensions().TotalSize())*sizeof(float));
|
|
gpu_out.device(sycl_device) =(gpu_in1 > gpu_in1.constant(0.5f)).select(gpu_in2, gpu_in3);
|
|
sycl_device.memcpyDeviceToHost(out.data(), gpu_out_data,(out.dimensions().TotalSize())*sizeof(float));
|
|
for (int i = 0; i < sizeDim1; ++i) {
|
|
for (int j = 0; j < sizeDim2; ++j) {
|
|
for (int k = 0; k < sizeDim3; ++k) {
|
|
VERIFY_IS_APPROX(out(i, j, k), (in1(i, j, k) > 0.5f)
|
|
? in2(i, j, k)
|
|
: in3(i, j, k));
|
|
}
|
|
}
|
|
}
|
|
printf("d= (a>0.5? b:c) Test Passed\n");
|
|
sycl_device.deallocate(gpu_in1_data);
|
|
sycl_device.deallocate(gpu_in2_data);
|
|
sycl_device.deallocate(gpu_in3_data);
|
|
sycl_device.deallocate(gpu_out_data);
|
|
}
|
|
void test_cxx11_tensor_sycl() {
|
|
cl::sycl::gpu_selector s;
|
|
Eigen::SyclDevice sycl_device(s);
|
|
CALL_SUBTEST(test_sycl_cpu(sycl_device));
|
|
}
|