mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-04-29 07:14:12 +08:00
384 lines
19 KiB
C++
384 lines
19 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2012 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#ifndef EIGEN_REF_H
|
|
#define EIGEN_REF_H
|
|
|
|
// IWYU pragma: private
|
|
#include "./InternalHeaderCheck.h"
|
|
|
|
namespace Eigen {
|
|
|
|
namespace internal {
|
|
|
|
template <typename PlainObjectType_, int Options_, typename StrideType_>
|
|
struct traits<Ref<PlainObjectType_, Options_, StrideType_> >
|
|
: public traits<Map<PlainObjectType_, Options_, StrideType_> > {
|
|
typedef PlainObjectType_ PlainObjectType;
|
|
typedef StrideType_ StrideType;
|
|
enum {
|
|
Options = Options_,
|
|
Flags = traits<Map<PlainObjectType_, Options_, StrideType_> >::Flags | NestByRefBit,
|
|
Alignment = traits<Map<PlainObjectType_, Options_, StrideType_> >::Alignment,
|
|
InnerStrideAtCompileTime = traits<Map<PlainObjectType_, Options_, StrideType_> >::InnerStrideAtCompileTime,
|
|
OuterStrideAtCompileTime = traits<Map<PlainObjectType_, Options_, StrideType_> >::OuterStrideAtCompileTime
|
|
};
|
|
|
|
template <typename Derived>
|
|
struct match {
|
|
enum {
|
|
IsVectorAtCompileTime = PlainObjectType::IsVectorAtCompileTime || Derived::IsVectorAtCompileTime,
|
|
HasDirectAccess = internal::has_direct_access<Derived>::ret,
|
|
StorageOrderMatch =
|
|
IsVectorAtCompileTime || ((PlainObjectType::Flags & RowMajorBit) == (Derived::Flags & RowMajorBit)),
|
|
InnerStrideMatch = int(InnerStrideAtCompileTime) == int(Dynamic) ||
|
|
int(InnerStrideAtCompileTime) == int(Derived::InnerStrideAtCompileTime) ||
|
|
(int(InnerStrideAtCompileTime) == 0 && int(Derived::InnerStrideAtCompileTime) == 1),
|
|
OuterStrideMatch = IsVectorAtCompileTime || int(OuterStrideAtCompileTime) == int(Dynamic) ||
|
|
int(OuterStrideAtCompileTime) == int(Derived::OuterStrideAtCompileTime),
|
|
// NOTE, this indirection of evaluator<Derived>::Alignment is needed
|
|
// to workaround a very strange bug in MSVC related to the instantiation
|
|
// of has_*ary_operator in evaluator<CwiseNullaryOp>.
|
|
// This line is surprisingly very sensitive. For instance, simply adding parenthesis
|
|
// as "DerivedAlignment = (int(evaluator<Derived>::Alignment))," will make MSVC fail...
|
|
DerivedAlignment = int(evaluator<Derived>::Alignment),
|
|
AlignmentMatch = (int(traits<PlainObjectType>::Alignment) == int(Unaligned)) ||
|
|
(DerivedAlignment >= int(Alignment)), // FIXME the first condition is not very clear, it should
|
|
// be replaced by the required alignment
|
|
ScalarTypeMatch = internal::is_same<typename PlainObjectType::Scalar, typename Derived::Scalar>::value,
|
|
MatchAtCompileTime = HasDirectAccess && StorageOrderMatch && InnerStrideMatch && OuterStrideMatch &&
|
|
AlignmentMatch && ScalarTypeMatch
|
|
};
|
|
typedef std::conditional_t<MatchAtCompileTime, internal::true_type, internal::false_type> type;
|
|
};
|
|
};
|
|
|
|
template <typename Derived>
|
|
struct traits<RefBase<Derived> > : public traits<Derived> {};
|
|
|
|
} // namespace internal
|
|
|
|
template <typename Derived>
|
|
class RefBase : public MapBase<Derived> {
|
|
typedef typename internal::traits<Derived>::PlainObjectType PlainObjectType;
|
|
typedef typename internal::traits<Derived>::StrideType StrideType;
|
|
|
|
public:
|
|
typedef MapBase<Derived> Base;
|
|
EIGEN_DENSE_PUBLIC_INTERFACE(RefBase)
|
|
|
|
EIGEN_DEVICE_FUNC constexpr Index innerStride() const {
|
|
return StrideType::InnerStrideAtCompileTime != 0 ? m_stride.inner() : 1;
|
|
}
|
|
|
|
EIGEN_DEVICE_FUNC constexpr Index outerStride() const {
|
|
return StrideType::OuterStrideAtCompileTime != 0 ? m_stride.outer()
|
|
: IsVectorAtCompileTime ? this->size()
|
|
: int(Flags) & RowMajorBit ? this->cols()
|
|
: this->rows();
|
|
}
|
|
|
|
EIGEN_DEVICE_FUNC RefBase()
|
|
: Base(0, RowsAtCompileTime == Dynamic ? 0 : RowsAtCompileTime,
|
|
ColsAtCompileTime == Dynamic ? 0 : ColsAtCompileTime),
|
|
// Stride<> does not allow default ctor for Dynamic strides, so let' initialize it with dummy values:
|
|
m_stride(StrideType::OuterStrideAtCompileTime == Dynamic ? 0 : StrideType::OuterStrideAtCompileTime,
|
|
StrideType::InnerStrideAtCompileTime == Dynamic ? 0 : StrideType::InnerStrideAtCompileTime) {}
|
|
|
|
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(RefBase)
|
|
|
|
protected:
|
|
typedef Stride<StrideType::OuterStrideAtCompileTime, StrideType::InnerStrideAtCompileTime> StrideBase;
|
|
|
|
// Resolves inner stride if default 0.
|
|
static EIGEN_DEVICE_FUNC constexpr Index resolveInnerStride(Index inner) { return inner == 0 ? 1 : inner; }
|
|
|
|
// Resolves outer stride if default 0.
|
|
static EIGEN_DEVICE_FUNC constexpr Index resolveOuterStride(Index inner, Index outer, Index rows, Index cols,
|
|
bool isVectorAtCompileTime, bool isRowMajor) {
|
|
return outer == 0 ? isVectorAtCompileTime ? inner * rows * cols : isRowMajor ? inner * cols : inner * rows : outer;
|
|
}
|
|
|
|
// Returns true if construction is valid, false if there is a stride mismatch,
|
|
// and fails if there is a size mismatch.
|
|
template <typename Expression>
|
|
EIGEN_DEVICE_FUNC bool construct(Expression& expr) {
|
|
// Check matrix sizes. If this is a compile-time vector, we do allow
|
|
// implicitly transposing.
|
|
EIGEN_STATIC_ASSERT(EIGEN_PREDICATE_SAME_MATRIX_SIZE(PlainObjectType, Expression)
|
|
// If it is a vector, the transpose sizes might match.
|
|
|| (PlainObjectType::IsVectorAtCompileTime &&
|
|
((int(PlainObjectType::RowsAtCompileTime) == Eigen::Dynamic ||
|
|
int(Expression::ColsAtCompileTime) == Eigen::Dynamic ||
|
|
int(PlainObjectType::RowsAtCompileTime) == int(Expression::ColsAtCompileTime)) &&
|
|
(int(PlainObjectType::ColsAtCompileTime) == Eigen::Dynamic ||
|
|
int(Expression::RowsAtCompileTime) == Eigen::Dynamic ||
|
|
int(PlainObjectType::ColsAtCompileTime) == int(Expression::RowsAtCompileTime)))),
|
|
YOU_MIXED_MATRICES_OF_DIFFERENT_SIZES)
|
|
|
|
// Determine runtime rows and columns.
|
|
Index rows = expr.rows();
|
|
Index cols = expr.cols();
|
|
if (PlainObjectType::RowsAtCompileTime == 1) {
|
|
eigen_assert(expr.rows() == 1 || expr.cols() == 1);
|
|
rows = 1;
|
|
cols = expr.size();
|
|
} else if (PlainObjectType::ColsAtCompileTime == 1) {
|
|
eigen_assert(expr.rows() == 1 || expr.cols() == 1);
|
|
rows = expr.size();
|
|
cols = 1;
|
|
}
|
|
// Verify that the sizes are valid.
|
|
eigen_assert((PlainObjectType::RowsAtCompileTime == Dynamic) || (PlainObjectType::RowsAtCompileTime == rows));
|
|
eigen_assert((PlainObjectType::ColsAtCompileTime == Dynamic) || (PlainObjectType::ColsAtCompileTime == cols));
|
|
|
|
// If this is a vector, we might be transposing, which means that stride should swap.
|
|
const bool transpose = PlainObjectType::IsVectorAtCompileTime && (rows != expr.rows());
|
|
// If the storage format differs, we also need to swap the stride.
|
|
const bool row_major = ((PlainObjectType::Flags)&RowMajorBit) != 0;
|
|
const bool expr_row_major = (Expression::Flags & RowMajorBit) != 0;
|
|
const bool storage_differs = (row_major != expr_row_major);
|
|
|
|
const bool swap_stride = (transpose != storage_differs);
|
|
|
|
// Determine expr's actual strides, resolving any defaults if zero.
|
|
const Index expr_inner_actual = resolveInnerStride(expr.innerStride());
|
|
const Index expr_outer_actual = resolveOuterStride(expr_inner_actual, expr.outerStride(), expr.rows(), expr.cols(),
|
|
Expression::IsVectorAtCompileTime != 0, expr_row_major);
|
|
|
|
// If this is a column-major row vector or row-major column vector, the inner-stride
|
|
// is arbitrary, so set it to either the compile-time inner stride or 1.
|
|
const bool row_vector = (rows == 1);
|
|
const bool col_vector = (cols == 1);
|
|
const Index inner_stride =
|
|
((!row_major && row_vector) || (row_major && col_vector))
|
|
? (StrideType::InnerStrideAtCompileTime > 0 ? Index(StrideType::InnerStrideAtCompileTime) : 1)
|
|
: swap_stride ? expr_outer_actual
|
|
: expr_inner_actual;
|
|
|
|
// If this is a column-major column vector or row-major row vector, the outer-stride
|
|
// is arbitrary, so set it to either the compile-time outer stride or vector size.
|
|
const Index outer_stride =
|
|
((!row_major && col_vector) || (row_major && row_vector))
|
|
? (StrideType::OuterStrideAtCompileTime > 0 ? Index(StrideType::OuterStrideAtCompileTime)
|
|
: rows * cols * inner_stride)
|
|
: swap_stride ? expr_inner_actual
|
|
: expr_outer_actual;
|
|
|
|
// Check if given inner/outer strides are compatible with compile-time strides.
|
|
const bool inner_valid = (StrideType::InnerStrideAtCompileTime == Dynamic) ||
|
|
(resolveInnerStride(Index(StrideType::InnerStrideAtCompileTime)) == inner_stride);
|
|
if (!inner_valid) {
|
|
return false;
|
|
}
|
|
|
|
const bool outer_valid =
|
|
(StrideType::OuterStrideAtCompileTime == Dynamic) ||
|
|
(resolveOuterStride(inner_stride, Index(StrideType::OuterStrideAtCompileTime), rows, cols,
|
|
PlainObjectType::IsVectorAtCompileTime != 0, row_major) == outer_stride);
|
|
if (!outer_valid) {
|
|
return false;
|
|
}
|
|
|
|
internal::construct_at<Base>(this, expr.data(), rows, cols);
|
|
internal::construct_at(&m_stride, (StrideType::OuterStrideAtCompileTime == 0) ? 0 : outer_stride,
|
|
(StrideType::InnerStrideAtCompileTime == 0) ? 0 : inner_stride);
|
|
return true;
|
|
}
|
|
|
|
StrideBase m_stride;
|
|
};
|
|
|
|
/** \class Ref
|
|
* \ingroup Core_Module
|
|
*
|
|
* \brief A matrix or vector expression mapping an existing expression
|
|
*
|
|
* \tparam PlainObjectType the equivalent matrix type of the mapped data
|
|
* \tparam Options specifies the pointer alignment in bytes. It can be: \c #Aligned128, , \c #Aligned64, \c #Aligned32,
|
|
* \c #Aligned16, \c #Aligned8 or \c #Unaligned. The default is \c #Unaligned. \tparam StrideType optionally specifies
|
|
* strides. By default, Ref implies a contiguous storage along the inner dimension (inner stride==1), but accepts a
|
|
* variable outer stride (leading dimension). This can be overridden by specifying strides. The type passed here must be
|
|
* a specialization of the Stride template, see examples below.
|
|
*
|
|
* This class provides a way to write non-template functions taking Eigen objects as parameters while limiting the
|
|
* number of copies. A Ref<> object can represent either a const expression or a l-value: \code
|
|
* // in-out argument:
|
|
* void foo1(Ref<VectorXf> x);
|
|
*
|
|
* // read-only const argument:
|
|
* void foo2(const Ref<const VectorXf>& x);
|
|
* \endcode
|
|
*
|
|
* In the in-out case, the input argument must satisfy the constraints of the actual Ref<> type, otherwise a compilation
|
|
* issue will be triggered. By default, a Ref<VectorXf> can reference any dense vector expression of float having a
|
|
* contiguous memory layout. Likewise, a Ref<MatrixXf> can reference any column-major dense matrix expression of float
|
|
* whose column's elements are contiguously stored with the possibility to have a constant space in-between each column,
|
|
* i.e. the inner stride must be equal to 1, but the outer stride (or leading dimension) can be greater than the number
|
|
* of rows.
|
|
*
|
|
* In the const case, if the input expression does not match the above requirement, then it is evaluated into a
|
|
* temporary before being passed to the function. Here are some examples: \code MatrixXf A; VectorXf a; foo1(a.head());
|
|
* // OK foo1(A.col()); // OK foo1(A.row()); // Compilation error because here innerstride!=1
|
|
* foo2(A.row()); // Compilation error because A.row() is a 1xN object while foo2 is expecting a Nx1 object
|
|
* foo2(A.row().transpose()); // The row is copied into a contiguous temporary
|
|
* foo2(2*a); // The expression is evaluated into a temporary
|
|
* foo2(A.col().segment(2,4)); // No temporary
|
|
* \endcode
|
|
*
|
|
* The range of inputs that can be referenced without temporary can be enlarged using the last two template parameters.
|
|
* Here is an example accepting an innerstride!=1:
|
|
* \code
|
|
* // in-out argument:
|
|
* void foo3(Ref<VectorXf,0,InnerStride<> > x);
|
|
* foo3(A.row()); // OK
|
|
* \endcode
|
|
* The downside here is that the function foo3 might be significantly slower than foo1 because it won't be able to
|
|
* exploit vectorization, and will involve more expensive address computations even if the input is contiguously stored
|
|
* in memory. To overcome this issue, one might propose to overload internally calling a template function, e.g.: \code
|
|
* // in the .h:
|
|
* void foo(const Ref<MatrixXf>& A);
|
|
* void foo(const Ref<MatrixXf,0,Stride<> >& A);
|
|
*
|
|
* // in the .cpp:
|
|
* template<typename TypeOfA> void foo_impl(const TypeOfA& A) {
|
|
* ... // crazy code goes here
|
|
* }
|
|
* void foo(const Ref<MatrixXf>& A) { foo_impl(A); }
|
|
* void foo(const Ref<MatrixXf,0,Stride<> >& A) { foo_impl(A); }
|
|
* \endcode
|
|
*
|
|
* See also the following stackoverflow questions for further references:
|
|
* - <a href="http://stackoverflow.com/questions/21132538/correct-usage-of-the-eigenref-class">Correct usage of the
|
|
* Eigen::Ref<> class</a>
|
|
*
|
|
* \sa PlainObjectBase::Map(), \ref TopicStorageOrders
|
|
*/
|
|
template <typename PlainObjectType, int Options, typename StrideType>
|
|
class Ref : public RefBase<Ref<PlainObjectType, Options, StrideType> > {
|
|
private:
|
|
typedef internal::traits<Ref> Traits;
|
|
template <typename Derived>
|
|
EIGEN_DEVICE_FUNC inline Ref(
|
|
const PlainObjectBase<Derived>& expr,
|
|
std::enable_if_t<bool(Traits::template match<Derived>::MatchAtCompileTime), Derived>* = 0);
|
|
|
|
public:
|
|
typedef RefBase<Ref> Base;
|
|
EIGEN_DENSE_PUBLIC_INTERFACE(Ref)
|
|
|
|
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
|
template <typename Derived>
|
|
EIGEN_DEVICE_FUNC inline Ref(
|
|
PlainObjectBase<Derived>& expr,
|
|
std::enable_if_t<bool(Traits::template match<Derived>::MatchAtCompileTime), Derived>* = 0) {
|
|
EIGEN_STATIC_ASSERT(bool(Traits::template match<Derived>::MatchAtCompileTime), STORAGE_LAYOUT_DOES_NOT_MATCH);
|
|
// Construction must pass since we will not create temporary storage in the non-const case.
|
|
const bool success = Base::construct(expr.derived());
|
|
EIGEN_UNUSED_VARIABLE(success)
|
|
eigen_assert(success);
|
|
}
|
|
template <typename Derived>
|
|
EIGEN_DEVICE_FUNC inline Ref(
|
|
const DenseBase<Derived>& expr,
|
|
std::enable_if_t<bool(Traits::template match<Derived>::MatchAtCompileTime), Derived>* = 0)
|
|
#else
|
|
/** Implicit constructor from any dense expression */
|
|
template <typename Derived>
|
|
inline Ref(DenseBase<Derived>& expr)
|
|
#endif
|
|
{
|
|
EIGEN_STATIC_ASSERT(bool(internal::is_lvalue<Derived>::value), THIS_EXPRESSION_IS_NOT_A_LVALUE__IT_IS_READ_ONLY);
|
|
EIGEN_STATIC_ASSERT(bool(Traits::template match<Derived>::MatchAtCompileTime), STORAGE_LAYOUT_DOES_NOT_MATCH);
|
|
EIGEN_STATIC_ASSERT(!Derived::IsPlainObjectBase, THIS_EXPRESSION_IS_NOT_A_LVALUE__IT_IS_READ_ONLY);
|
|
// Construction must pass since we will not create temporary storage in the non-const case.
|
|
const bool success = Base::construct(expr.const_cast_derived());
|
|
EIGEN_UNUSED_VARIABLE(success)
|
|
eigen_assert(success);
|
|
}
|
|
|
|
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Ref)
|
|
};
|
|
|
|
// this is the const ref version
|
|
template <typename TPlainObjectType, int Options, typename StrideType>
|
|
class Ref<const TPlainObjectType, Options, StrideType>
|
|
: public RefBase<Ref<const TPlainObjectType, Options, StrideType> > {
|
|
typedef internal::traits<Ref> Traits;
|
|
|
|
static constexpr bool may_map_m_object_successfully =
|
|
(static_cast<int>(StrideType::InnerStrideAtCompileTime) == 0 ||
|
|
static_cast<int>(StrideType::InnerStrideAtCompileTime) == 1 ||
|
|
static_cast<int>(StrideType::InnerStrideAtCompileTime) == Dynamic) &&
|
|
(TPlainObjectType::IsVectorAtCompileTime || static_cast<int>(StrideType::OuterStrideAtCompileTime) == 0 ||
|
|
static_cast<int>(StrideType::OuterStrideAtCompileTime) == Dynamic ||
|
|
static_cast<int>(StrideType::OuterStrideAtCompileTime) ==
|
|
static_cast<int>(TPlainObjectType::InnerSizeAtCompileTime) ||
|
|
static_cast<int>(TPlainObjectType::InnerSizeAtCompileTime) == Dynamic);
|
|
|
|
public:
|
|
typedef RefBase<Ref> Base;
|
|
EIGEN_DENSE_PUBLIC_INTERFACE(Ref)
|
|
|
|
template <typename Derived>
|
|
EIGEN_DEVICE_FUNC inline Ref(const DenseBase<Derived>& expr,
|
|
std::enable_if_t<bool(Traits::template match<Derived>::ScalarTypeMatch), Derived>* = 0) {
|
|
// std::cout << match_helper<Derived>::HasDirectAccess << "," << match_helper<Derived>::OuterStrideMatch << ","
|
|
// << match_helper<Derived>::InnerStrideMatch << "\n"; std::cout << int(StrideType::OuterStrideAtCompileTime)
|
|
// << " - " << int(Derived::OuterStrideAtCompileTime) << "\n"; std::cout <<
|
|
// int(StrideType::InnerStrideAtCompileTime) << " - " << int(Derived::InnerStrideAtCompileTime) << "\n";
|
|
EIGEN_STATIC_ASSERT(Traits::template match<Derived>::type::value || may_map_m_object_successfully,
|
|
STORAGE_LAYOUT_DOES_NOT_MATCH);
|
|
construct(expr.derived(), typename Traits::template match<Derived>::type());
|
|
}
|
|
|
|
EIGEN_DEVICE_FUNC inline Ref(const Ref& other) : Base(other) {
|
|
// copy constructor shall not copy the m_object, to avoid unnecessary malloc and copy
|
|
}
|
|
|
|
EIGEN_DEVICE_FUNC inline Ref(Ref&& other) {
|
|
if (other.data() == other.m_object.data()) {
|
|
m_object = std::move(other.m_object);
|
|
Base::construct(m_object);
|
|
} else
|
|
Base::construct(other);
|
|
}
|
|
|
|
template <typename OtherRef>
|
|
EIGEN_DEVICE_FUNC inline Ref(const RefBase<OtherRef>& other) {
|
|
EIGEN_STATIC_ASSERT(Traits::template match<OtherRef>::type::value || may_map_m_object_successfully,
|
|
STORAGE_LAYOUT_DOES_NOT_MATCH);
|
|
construct(other.derived(), typename Traits::template match<OtherRef>::type());
|
|
}
|
|
|
|
protected:
|
|
template <typename Expression>
|
|
EIGEN_DEVICE_FUNC void construct(const Expression& expr, internal::true_type) {
|
|
// Check if we can use the underlying expr's storage directly, otherwise call the copy version.
|
|
if (!Base::construct(expr)) {
|
|
construct(expr, internal::false_type());
|
|
}
|
|
}
|
|
|
|
template <typename Expression>
|
|
EIGEN_DEVICE_FUNC void construct(const Expression& expr, internal::false_type) {
|
|
internal::call_assignment_no_alias(m_object, expr, internal::assign_op<Scalar, Scalar>());
|
|
const bool success = Base::construct(m_object);
|
|
EIGEN_ONLY_USED_FOR_DEBUG(success)
|
|
eigen_assert(success);
|
|
}
|
|
|
|
protected:
|
|
TPlainObjectType m_object;
|
|
};
|
|
|
|
} // end namespace Eigen
|
|
|
|
#endif // EIGEN_REF_H
|