mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-04-29 07:14:12 +08:00
340 lines
11 KiB
C++
340 lines
11 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2017 Kyle Macfarlan <kyle.macfarlan@gmail.com>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#ifndef EIGEN_KLUSUPPORT_H
|
|
#define EIGEN_KLUSUPPORT_H
|
|
|
|
// IWYU pragma: private
|
|
#include "./InternalHeaderCheck.h"
|
|
|
|
namespace Eigen {
|
|
|
|
/* TODO extract L, extract U, compute det, etc... */
|
|
|
|
/** \ingroup KLUSupport_Module
|
|
* \brief A sparse LU factorization and solver based on KLU
|
|
*
|
|
* This class allows to solve for A.X = B sparse linear problems via a LU factorization
|
|
* using the KLU library. The sparse matrix A must be squared and full rank.
|
|
* The vectors or matrices X and B can be either dense or sparse.
|
|
*
|
|
* \warning The input matrix A should be in a \b compressed and \b column-major form.
|
|
* Otherwise an expensive copy will be made. You can call the inexpensive makeCompressed() to get a compressed matrix.
|
|
* \tparam MatrixType_ the type of the sparse matrix A, it must be a SparseMatrix<>
|
|
*
|
|
* \implsparsesolverconcept
|
|
*
|
|
* \sa \ref TutorialSparseSolverConcept, class UmfPackLU, class SparseLU
|
|
*/
|
|
|
|
inline int klu_solve(klu_symbolic *Symbolic, klu_numeric *Numeric, Index ldim, Index nrhs, double B[],
|
|
klu_common *Common, double) {
|
|
return klu_solve(Symbolic, Numeric, internal::convert_index<int>(ldim), internal::convert_index<int>(nrhs), B,
|
|
Common);
|
|
}
|
|
|
|
inline int klu_solve(klu_symbolic *Symbolic, klu_numeric *Numeric, Index ldim, Index nrhs, std::complex<double> B[],
|
|
klu_common *Common, std::complex<double>) {
|
|
return klu_z_solve(Symbolic, Numeric, internal::convert_index<int>(ldim), internal::convert_index<int>(nrhs),
|
|
&numext::real_ref(B[0]), Common);
|
|
}
|
|
|
|
inline int klu_tsolve(klu_symbolic *Symbolic, klu_numeric *Numeric, Index ldim, Index nrhs, double B[],
|
|
klu_common *Common, double) {
|
|
return klu_tsolve(Symbolic, Numeric, internal::convert_index<int>(ldim), internal::convert_index<int>(nrhs), B,
|
|
Common);
|
|
}
|
|
|
|
inline int klu_tsolve(klu_symbolic *Symbolic, klu_numeric *Numeric, Index ldim, Index nrhs, std::complex<double> B[],
|
|
klu_common *Common, std::complex<double>) {
|
|
return klu_z_tsolve(Symbolic, Numeric, internal::convert_index<int>(ldim), internal::convert_index<int>(nrhs),
|
|
&numext::real_ref(B[0]), 0, Common);
|
|
}
|
|
|
|
inline klu_numeric *klu_factor(int Ap[], int Ai[], double Ax[], klu_symbolic *Symbolic, klu_common *Common, double) {
|
|
return klu_factor(Ap, Ai, Ax, Symbolic, Common);
|
|
}
|
|
|
|
inline klu_numeric *klu_factor(int Ap[], int Ai[], std::complex<double> Ax[], klu_symbolic *Symbolic,
|
|
klu_common *Common, std::complex<double>) {
|
|
return klu_z_factor(Ap, Ai, &numext::real_ref(Ax[0]), Symbolic, Common);
|
|
}
|
|
|
|
template <typename MatrixType_>
|
|
class KLU : public SparseSolverBase<KLU<MatrixType_> > {
|
|
protected:
|
|
typedef SparseSolverBase<KLU<MatrixType_> > Base;
|
|
using Base::m_isInitialized;
|
|
|
|
public:
|
|
using Base::_solve_impl;
|
|
typedef MatrixType_ MatrixType;
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
typedef typename MatrixType::RealScalar RealScalar;
|
|
typedef typename MatrixType::StorageIndex StorageIndex;
|
|
typedef Matrix<Scalar, Dynamic, 1> Vector;
|
|
typedef Matrix<int, 1, MatrixType::ColsAtCompileTime> IntRowVectorType;
|
|
typedef Matrix<int, MatrixType::RowsAtCompileTime, 1> IntColVectorType;
|
|
typedef SparseMatrix<Scalar> LUMatrixType;
|
|
typedef SparseMatrix<Scalar, ColMajor, int> KLUMatrixType;
|
|
typedef Ref<const KLUMatrixType, StandardCompressedFormat> KLUMatrixRef;
|
|
enum { ColsAtCompileTime = MatrixType::ColsAtCompileTime, MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime };
|
|
|
|
public:
|
|
KLU() : m_dummy(0, 0), mp_matrix(m_dummy) { init(); }
|
|
|
|
template <typename InputMatrixType>
|
|
explicit KLU(const InputMatrixType &matrix) : mp_matrix(matrix) {
|
|
init();
|
|
compute(matrix);
|
|
}
|
|
|
|
~KLU() {
|
|
if (m_symbolic) klu_free_symbolic(&m_symbolic, &m_common);
|
|
if (m_numeric) klu_free_numeric(&m_numeric, &m_common);
|
|
}
|
|
|
|
constexpr Index rows() const EIGEN_NOEXCEPT { return mp_matrix.rows(); }
|
|
constexpr Index cols() const EIGEN_NOEXCEPT { return mp_matrix.cols(); }
|
|
|
|
/** \brief Reports whether previous computation was successful.
|
|
*
|
|
* \returns \c Success if computation was successful,
|
|
* \c NumericalIssue if the matrix.appears to be negative.
|
|
*/
|
|
ComputationInfo info() const {
|
|
eigen_assert(m_isInitialized && "Decomposition is not initialized.");
|
|
return m_info;
|
|
}
|
|
#if 0 // not implemented yet
|
|
inline const LUMatrixType& matrixL() const
|
|
{
|
|
if (m_extractedDataAreDirty) extractData();
|
|
return m_l;
|
|
}
|
|
|
|
inline const LUMatrixType& matrixU() const
|
|
{
|
|
if (m_extractedDataAreDirty) extractData();
|
|
return m_u;
|
|
}
|
|
|
|
inline const IntColVectorType& permutationP() const
|
|
{
|
|
if (m_extractedDataAreDirty) extractData();
|
|
return m_p;
|
|
}
|
|
|
|
inline const IntRowVectorType& permutationQ() const
|
|
{
|
|
if (m_extractedDataAreDirty) extractData();
|
|
return m_q;
|
|
}
|
|
#endif
|
|
/** Computes the sparse Cholesky decomposition of \a matrix
|
|
* Note that the matrix should be column-major, and in compressed format for best performance.
|
|
* \sa SparseMatrix::makeCompressed().
|
|
*/
|
|
template <typename InputMatrixType>
|
|
void compute(const InputMatrixType &matrix) {
|
|
if (m_symbolic) klu_free_symbolic(&m_symbolic, &m_common);
|
|
if (m_numeric) klu_free_numeric(&m_numeric, &m_common);
|
|
grab(matrix.derived());
|
|
analyzePattern_impl();
|
|
factorize_impl();
|
|
}
|
|
|
|
/** Performs a symbolic decomposition on the sparcity of \a matrix.
|
|
*
|
|
* This function is particularly useful when solving for several problems having the same structure.
|
|
*
|
|
* \sa factorize(), compute()
|
|
*/
|
|
template <typename InputMatrixType>
|
|
void analyzePattern(const InputMatrixType &matrix) {
|
|
if (m_symbolic) klu_free_symbolic(&m_symbolic, &m_common);
|
|
if (m_numeric) klu_free_numeric(&m_numeric, &m_common);
|
|
|
|
grab(matrix.derived());
|
|
|
|
analyzePattern_impl();
|
|
}
|
|
|
|
/** Provides access to the control settings array used by KLU.
|
|
*
|
|
* See KLU documentation for details.
|
|
*/
|
|
inline const klu_common &kluCommon() const { return m_common; }
|
|
|
|
/** Provides access to the control settings array used by UmfPack.
|
|
*
|
|
* If this array contains NaN's, the default values are used.
|
|
*
|
|
* See KLU documentation for details.
|
|
*/
|
|
inline klu_common &kluCommon() { return m_common; }
|
|
|
|
/** Performs a numeric decomposition of \a matrix
|
|
*
|
|
* The given matrix must has the same sparcity than the matrix on which the pattern anylysis has been performed.
|
|
*
|
|
* \sa analyzePattern(), compute()
|
|
*/
|
|
template <typename InputMatrixType>
|
|
void factorize(const InputMatrixType &matrix) {
|
|
eigen_assert(m_analysisIsOk && "KLU: you must first call analyzePattern()");
|
|
if (m_numeric) klu_free_numeric(&m_numeric, &m_common);
|
|
|
|
grab(matrix.derived());
|
|
|
|
factorize_impl();
|
|
}
|
|
|
|
/** \internal */
|
|
template <typename BDerived, typename XDerived>
|
|
bool _solve_impl(const MatrixBase<BDerived> &b, MatrixBase<XDerived> &x) const;
|
|
|
|
#if 0 // not implemented yet
|
|
Scalar determinant() const;
|
|
|
|
void extractData() const;
|
|
#endif
|
|
|
|
protected:
|
|
void init() {
|
|
m_info = InvalidInput;
|
|
m_isInitialized = false;
|
|
m_numeric = 0;
|
|
m_symbolic = 0;
|
|
m_extractedDataAreDirty = true;
|
|
|
|
klu_defaults(&m_common);
|
|
}
|
|
|
|
void analyzePattern_impl() {
|
|
m_info = InvalidInput;
|
|
m_analysisIsOk = false;
|
|
m_factorizationIsOk = false;
|
|
m_symbolic = klu_analyze(internal::convert_index<int>(mp_matrix.rows()),
|
|
const_cast<StorageIndex *>(mp_matrix.outerIndexPtr()),
|
|
const_cast<StorageIndex *>(mp_matrix.innerIndexPtr()), &m_common);
|
|
if (m_symbolic) {
|
|
m_isInitialized = true;
|
|
m_info = Success;
|
|
m_analysisIsOk = true;
|
|
m_extractedDataAreDirty = true;
|
|
}
|
|
}
|
|
|
|
void factorize_impl() {
|
|
m_numeric = klu_factor(const_cast<StorageIndex *>(mp_matrix.outerIndexPtr()),
|
|
const_cast<StorageIndex *>(mp_matrix.innerIndexPtr()),
|
|
const_cast<Scalar *>(mp_matrix.valuePtr()), m_symbolic, &m_common, Scalar());
|
|
|
|
m_info = m_numeric ? Success : NumericalIssue;
|
|
m_factorizationIsOk = m_numeric ? 1 : 0;
|
|
m_extractedDataAreDirty = true;
|
|
}
|
|
|
|
template <typename MatrixDerived>
|
|
void grab(const EigenBase<MatrixDerived> &A) {
|
|
internal::destroy_at(&mp_matrix);
|
|
internal::construct_at(&mp_matrix, A.derived());
|
|
}
|
|
|
|
void grab(const KLUMatrixRef &A) {
|
|
if (&(A.derived()) != &mp_matrix) {
|
|
internal::destroy_at(&mp_matrix);
|
|
internal::construct_at(&mp_matrix, A);
|
|
}
|
|
}
|
|
|
|
// cached data to reduce reallocation, etc.
|
|
#if 0 // not implemented yet
|
|
mutable LUMatrixType m_l;
|
|
mutable LUMatrixType m_u;
|
|
mutable IntColVectorType m_p;
|
|
mutable IntRowVectorType m_q;
|
|
#endif
|
|
|
|
KLUMatrixType m_dummy;
|
|
KLUMatrixRef mp_matrix;
|
|
|
|
klu_numeric *m_numeric;
|
|
klu_symbolic *m_symbolic;
|
|
klu_common m_common;
|
|
mutable ComputationInfo m_info;
|
|
int m_factorizationIsOk;
|
|
int m_analysisIsOk;
|
|
mutable bool m_extractedDataAreDirty;
|
|
|
|
private:
|
|
KLU(const KLU &) {}
|
|
};
|
|
|
|
#if 0 // not implemented yet
|
|
template<typename MatrixType>
|
|
void KLU<MatrixType>::extractData() const
|
|
{
|
|
if (m_extractedDataAreDirty)
|
|
{
|
|
eigen_assert(false && "KLU: extractData Not Yet Implemented");
|
|
|
|
// get size of the data
|
|
int lnz, unz, rows, cols, nz_udiag;
|
|
umfpack_get_lunz(&lnz, &unz, &rows, &cols, &nz_udiag, m_numeric, Scalar());
|
|
|
|
// allocate data
|
|
m_l.resize(rows,(std::min)(rows,cols));
|
|
m_l.resizeNonZeros(lnz);
|
|
|
|
m_u.resize((std::min)(rows,cols),cols);
|
|
m_u.resizeNonZeros(unz);
|
|
|
|
m_p.resize(rows);
|
|
m_q.resize(cols);
|
|
|
|
// extract
|
|
umfpack_get_numeric(m_l.outerIndexPtr(), m_l.innerIndexPtr(), m_l.valuePtr(),
|
|
m_u.outerIndexPtr(), m_u.innerIndexPtr(), m_u.valuePtr(),
|
|
m_p.data(), m_q.data(), 0, 0, 0, m_numeric);
|
|
|
|
m_extractedDataAreDirty = false;
|
|
}
|
|
}
|
|
|
|
template<typename MatrixType>
|
|
typename KLU<MatrixType>::Scalar KLU<MatrixType>::determinant() const
|
|
{
|
|
eigen_assert(false && "KLU: extractData Not Yet Implemented");
|
|
return Scalar();
|
|
}
|
|
#endif
|
|
|
|
template <typename MatrixType>
|
|
template <typename BDerived, typename XDerived>
|
|
bool KLU<MatrixType>::_solve_impl(const MatrixBase<BDerived> &b, MatrixBase<XDerived> &x) const {
|
|
Index rhsCols = b.cols();
|
|
EIGEN_STATIC_ASSERT((XDerived::Flags & RowMajorBit) == 0, THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES);
|
|
eigen_assert(m_factorizationIsOk &&
|
|
"The decomposition is not in a valid state for solving, you must first call either compute() or "
|
|
"analyzePattern()/factorize()");
|
|
|
|
x = b;
|
|
int info = klu_solve(m_symbolic, m_numeric, b.rows(), rhsCols, x.const_cast_derived().data(),
|
|
const_cast<klu_common *>(&m_common), Scalar());
|
|
|
|
m_info = info != 0 ? Success : NumericalIssue;
|
|
return true;
|
|
}
|
|
|
|
} // end namespace Eigen
|
|
|
|
#endif // EIGEN_KLUSUPPORT_H
|