mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-05-02 08:44:12 +08:00
553 lines
20 KiB
C++
553 lines
20 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
|
|
// Copyright (C) 2009-2015 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#ifndef EIGEN_PERMUTATIONMATRIX_H
|
|
#define EIGEN_PERMUTATIONMATRIX_H
|
|
|
|
// IWYU pragma: private
|
|
#include "./InternalHeaderCheck.h"
|
|
|
|
namespace Eigen {
|
|
|
|
namespace internal {
|
|
|
|
enum PermPermProduct_t { PermPermProduct };
|
|
|
|
} // end namespace internal
|
|
|
|
/** \class PermutationBase
|
|
* \ingroup Core_Module
|
|
*
|
|
* \brief Base class for permutations
|
|
*
|
|
* \tparam Derived the derived class
|
|
*
|
|
* This class is the base class for all expressions representing a permutation matrix,
|
|
* internally stored as a vector of integers.
|
|
* The convention followed here is that if \f$ \sigma \f$ is a permutation, the corresponding permutation matrix
|
|
* \f$ P_\sigma \f$ is such that if \f$ (e_1,\ldots,e_p) \f$ is the canonical basis, we have:
|
|
* \f[ P_\sigma(e_i) = e_{\sigma(i)}. \f]
|
|
* This convention ensures that for any two permutations \f$ \sigma, \tau \f$, we have:
|
|
* \f[ P_{\sigma\circ\tau} = P_\sigma P_\tau. \f]
|
|
*
|
|
* Permutation matrices are square and invertible.
|
|
*
|
|
* Notice that in addition to the member functions and operators listed here, there also are non-member
|
|
* operator* to multiply any kind of permutation object with any kind of matrix expression (MatrixBase)
|
|
* on either side.
|
|
*
|
|
* \sa class PermutationMatrix, class PermutationWrapper
|
|
*/
|
|
template <typename Derived>
|
|
class PermutationBase : public EigenBase<Derived> {
|
|
typedef internal::traits<Derived> Traits;
|
|
typedef EigenBase<Derived> Base;
|
|
|
|
public:
|
|
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
|
typedef typename Traits::IndicesType IndicesType;
|
|
enum {
|
|
Flags = Traits::Flags,
|
|
RowsAtCompileTime = Traits::RowsAtCompileTime,
|
|
ColsAtCompileTime = Traits::ColsAtCompileTime,
|
|
MaxRowsAtCompileTime = Traits::MaxRowsAtCompileTime,
|
|
MaxColsAtCompileTime = Traits::MaxColsAtCompileTime
|
|
};
|
|
typedef typename Traits::StorageIndex StorageIndex;
|
|
typedef Matrix<StorageIndex, RowsAtCompileTime, ColsAtCompileTime, 0, MaxRowsAtCompileTime, MaxColsAtCompileTime>
|
|
DenseMatrixType;
|
|
typedef PermutationMatrix<IndicesType::SizeAtCompileTime, IndicesType::MaxSizeAtCompileTime, StorageIndex>
|
|
PlainPermutationType;
|
|
typedef PlainPermutationType PlainObject;
|
|
using Base::derived;
|
|
typedef Inverse<Derived> InverseReturnType;
|
|
typedef void Scalar;
|
|
#endif
|
|
|
|
/** Copies the other permutation into *this */
|
|
template <typename OtherDerived>
|
|
Derived& operator=(const PermutationBase<OtherDerived>& other) {
|
|
indices() = other.indices();
|
|
return derived();
|
|
}
|
|
|
|
/** Assignment from the Transpositions \a tr */
|
|
template <typename OtherDerived>
|
|
Derived& operator=(const TranspositionsBase<OtherDerived>& tr) {
|
|
setIdentity(tr.size());
|
|
for (Index k = size() - 1; k >= 0; --k) applyTranspositionOnTheRight(k, tr.coeff(k));
|
|
return derived();
|
|
}
|
|
|
|
/** \returns the number of rows */
|
|
inline EIGEN_DEVICE_FUNC Index rows() const { return Index(indices().size()); }
|
|
|
|
/** \returns the number of columns */
|
|
inline EIGEN_DEVICE_FUNC Index cols() const { return Index(indices().size()); }
|
|
|
|
/** \returns the size of a side of the respective square matrix, i.e., the number of indices */
|
|
inline EIGEN_DEVICE_FUNC Index size() const { return Index(indices().size()); }
|
|
|
|
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
|
template <typename DenseDerived>
|
|
void evalTo(MatrixBase<DenseDerived>& other) const {
|
|
other.setZero();
|
|
for (Index i = 0; i < rows(); ++i) other.coeffRef(indices().coeff(i), i) = typename DenseDerived::Scalar(1);
|
|
}
|
|
#endif
|
|
|
|
/** \returns a Matrix object initialized from this permutation matrix. Notice that it
|
|
* is inefficient to return this Matrix object by value. For efficiency, favor using
|
|
* the Matrix constructor taking EigenBase objects.
|
|
*/
|
|
DenseMatrixType toDenseMatrix() const { return derived(); }
|
|
|
|
/** const version of indices(). */
|
|
const IndicesType& indices() const { return derived().indices(); }
|
|
/** \returns a reference to the stored array representing the permutation. */
|
|
IndicesType& indices() { return derived().indices(); }
|
|
|
|
/** Resizes to given size.
|
|
*/
|
|
inline void resize(Index newSize) { indices().resize(newSize); }
|
|
|
|
/** Sets *this to be the identity permutation matrix */
|
|
void setIdentity() {
|
|
StorageIndex n = StorageIndex(size());
|
|
for (StorageIndex i = 0; i < n; ++i) indices().coeffRef(i) = i;
|
|
}
|
|
|
|
/** Sets *this to be the identity permutation matrix of given size.
|
|
*/
|
|
void setIdentity(Index newSize) {
|
|
resize(newSize);
|
|
setIdentity();
|
|
}
|
|
|
|
/** Multiplies *this by the transposition \f$(ij)\f$ on the left.
|
|
*
|
|
* \returns a reference to *this.
|
|
*
|
|
* \warning This is much slower than applyTranspositionOnTheRight(Index,Index):
|
|
* this has linear complexity and requires a lot of branching.
|
|
*
|
|
* \sa applyTranspositionOnTheRight(Index,Index)
|
|
*/
|
|
Derived& applyTranspositionOnTheLeft(Index i, Index j) {
|
|
eigen_assert(i >= 0 && j >= 0 && i < size() && j < size());
|
|
for (Index k = 0; k < size(); ++k) {
|
|
if (indices().coeff(k) == i)
|
|
indices().coeffRef(k) = StorageIndex(j);
|
|
else if (indices().coeff(k) == j)
|
|
indices().coeffRef(k) = StorageIndex(i);
|
|
}
|
|
return derived();
|
|
}
|
|
|
|
/** Multiplies *this by the transposition \f$(ij)\f$ on the right.
|
|
*
|
|
* \returns a reference to *this.
|
|
*
|
|
* This is a fast operation, it only consists in swapping two indices.
|
|
*
|
|
* \sa applyTranspositionOnTheLeft(Index,Index)
|
|
*/
|
|
Derived& applyTranspositionOnTheRight(Index i, Index j) {
|
|
eigen_assert(i >= 0 && j >= 0 && i < size() && j < size());
|
|
std::swap(indices().coeffRef(i), indices().coeffRef(j));
|
|
return derived();
|
|
}
|
|
|
|
/** \returns the inverse permutation matrix.
|
|
*
|
|
* \note \blank \note_try_to_help_rvo
|
|
*/
|
|
inline InverseReturnType inverse() const { return InverseReturnType(derived()); }
|
|
/** \returns the tranpose permutation matrix.
|
|
*
|
|
* \note \blank \note_try_to_help_rvo
|
|
*/
|
|
inline InverseReturnType transpose() const { return InverseReturnType(derived()); }
|
|
|
|
/**** multiplication helpers to hopefully get RVO ****/
|
|
|
|
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
|
protected:
|
|
template <typename OtherDerived>
|
|
void assignTranspose(const PermutationBase<OtherDerived>& other) {
|
|
for (Index i = 0; i < rows(); ++i) indices().coeffRef(other.indices().coeff(i)) = i;
|
|
}
|
|
template <typename Lhs, typename Rhs>
|
|
void assignProduct(const Lhs& lhs, const Rhs& rhs) {
|
|
eigen_assert(lhs.cols() == rhs.rows());
|
|
for (Index i = 0; i < rows(); ++i) indices().coeffRef(i) = lhs.indices().coeff(rhs.indices().coeff(i));
|
|
}
|
|
#endif
|
|
|
|
public:
|
|
/** \returns the product permutation matrix.
|
|
*
|
|
* \note \blank \note_try_to_help_rvo
|
|
*/
|
|
template <typename Other>
|
|
inline PlainPermutationType operator*(const PermutationBase<Other>& other) const {
|
|
return PlainPermutationType(internal::PermPermProduct, derived(), other.derived());
|
|
}
|
|
|
|
/** \returns the product of a permutation with another inverse permutation.
|
|
*
|
|
* \note \blank \note_try_to_help_rvo
|
|
*/
|
|
template <typename Other>
|
|
inline PlainPermutationType operator*(const InverseImpl<Other, PermutationStorage>& other) const {
|
|
return PlainPermutationType(internal::PermPermProduct, *this, other.eval());
|
|
}
|
|
|
|
/** \returns the product of an inverse permutation with another permutation.
|
|
*
|
|
* \note \blank \note_try_to_help_rvo
|
|
*/
|
|
template <typename Other>
|
|
friend inline PlainPermutationType operator*(const InverseImpl<Other, PermutationStorage>& other,
|
|
const PermutationBase& perm) {
|
|
return PlainPermutationType(internal::PermPermProduct, other.eval(), perm);
|
|
}
|
|
|
|
/** \returns the determinant of the permutation matrix, which is either 1 or -1 depending on the parity of the
|
|
* permutation.
|
|
*
|
|
* This function is O(\c n) procedure allocating a buffer of \c n booleans.
|
|
*/
|
|
Index determinant() const {
|
|
Index res = 1;
|
|
Index n = size();
|
|
Matrix<bool, RowsAtCompileTime, 1, 0, MaxRowsAtCompileTime> mask(n);
|
|
mask.fill(false);
|
|
Index r = 0;
|
|
while (r < n) {
|
|
// search for the next seed
|
|
while (r < n && mask[r]) r++;
|
|
if (r >= n) break;
|
|
// we got one, let's follow it until we are back to the seed
|
|
Index k0 = r++;
|
|
mask.coeffRef(k0) = true;
|
|
for (Index k = indices().coeff(k0); k != k0; k = indices().coeff(k)) {
|
|
mask.coeffRef(k) = true;
|
|
res = -res;
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
protected:
|
|
};
|
|
|
|
namespace internal {
|
|
template <int SizeAtCompileTime, int MaxSizeAtCompileTime, typename StorageIndex_>
|
|
struct traits<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, StorageIndex_> >
|
|
: traits<
|
|
Matrix<StorageIndex_, SizeAtCompileTime, SizeAtCompileTime, 0, MaxSizeAtCompileTime, MaxSizeAtCompileTime> > {
|
|
typedef PermutationStorage StorageKind;
|
|
typedef Matrix<StorageIndex_, SizeAtCompileTime, 1, 0, MaxSizeAtCompileTime, 1> IndicesType;
|
|
typedef StorageIndex_ StorageIndex;
|
|
typedef void Scalar;
|
|
};
|
|
} // namespace internal
|
|
|
|
/** \class PermutationMatrix
|
|
* \ingroup Core_Module
|
|
*
|
|
* \brief Permutation matrix
|
|
*
|
|
* \tparam SizeAtCompileTime the number of rows/cols, or Dynamic
|
|
* \tparam MaxSizeAtCompileTime the maximum number of rows/cols, or Dynamic. This optional parameter defaults to
|
|
* SizeAtCompileTime. Most of the time, you should not have to specify it. \tparam StorageIndex_ the integer type of the
|
|
* indices
|
|
*
|
|
* This class represents a permutation matrix, internally stored as a vector of integers.
|
|
*
|
|
* \sa class PermutationBase, class PermutationWrapper, class DiagonalMatrix
|
|
*/
|
|
template <int SizeAtCompileTime, int MaxSizeAtCompileTime, typename StorageIndex_>
|
|
class PermutationMatrix
|
|
: public PermutationBase<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, StorageIndex_> > {
|
|
typedef PermutationBase<PermutationMatrix> Base;
|
|
typedef internal::traits<PermutationMatrix> Traits;
|
|
|
|
public:
|
|
typedef const PermutationMatrix& Nested;
|
|
|
|
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
|
typedef typename Traits::IndicesType IndicesType;
|
|
typedef typename Traits::StorageIndex StorageIndex;
|
|
#endif
|
|
|
|
inline PermutationMatrix() {}
|
|
|
|
/** Constructs an uninitialized permutation matrix of given size.
|
|
*/
|
|
explicit inline PermutationMatrix(Index size) : m_indices(size) {
|
|
eigen_internal_assert(size <= NumTraits<StorageIndex>::highest());
|
|
}
|
|
|
|
/** Copy constructor. */
|
|
template <typename OtherDerived>
|
|
inline PermutationMatrix(const PermutationBase<OtherDerived>& other) : m_indices(other.indices()) {}
|
|
|
|
/** Generic constructor from expression of the indices. The indices
|
|
* array has the meaning that the permutations sends each integer i to indices[i].
|
|
*
|
|
* \warning It is your responsibility to check that the indices array that you passes actually
|
|
* describes a permutation, i.e., each value between 0 and n-1 occurs exactly once, where n is the
|
|
* array's size.
|
|
*/
|
|
template <typename Other>
|
|
explicit inline PermutationMatrix(const MatrixBase<Other>& indices) : m_indices(indices) {}
|
|
|
|
/** Convert the Transpositions \a tr to a permutation matrix */
|
|
template <typename Other>
|
|
explicit PermutationMatrix(const TranspositionsBase<Other>& tr) : m_indices(tr.size()) {
|
|
*this = tr;
|
|
}
|
|
|
|
/** Copies the other permutation into *this */
|
|
template <typename Other>
|
|
PermutationMatrix& operator=(const PermutationBase<Other>& other) {
|
|
m_indices = other.indices();
|
|
return *this;
|
|
}
|
|
|
|
/** Assignment from the Transpositions \a tr */
|
|
template <typename Other>
|
|
PermutationMatrix& operator=(const TranspositionsBase<Other>& tr) {
|
|
return Base::operator=(tr.derived());
|
|
}
|
|
|
|
/** const version of indices(). */
|
|
const IndicesType& indices() const { return m_indices; }
|
|
/** \returns a reference to the stored array representing the permutation. */
|
|
IndicesType& indices() { return m_indices; }
|
|
|
|
/**** multiplication helpers to hopefully get RVO ****/
|
|
|
|
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
|
template <typename Other>
|
|
PermutationMatrix(const InverseImpl<Other, PermutationStorage>& other)
|
|
: m_indices(other.derived().nestedExpression().size()) {
|
|
eigen_internal_assert(m_indices.size() <= NumTraits<StorageIndex>::highest());
|
|
StorageIndex end = StorageIndex(m_indices.size());
|
|
for (StorageIndex i = 0; i < end; ++i)
|
|
m_indices.coeffRef(other.derived().nestedExpression().indices().coeff(i)) = i;
|
|
}
|
|
template <typename Lhs, typename Rhs>
|
|
PermutationMatrix(internal::PermPermProduct_t, const Lhs& lhs, const Rhs& rhs) : m_indices(lhs.indices().size()) {
|
|
Base::assignProduct(lhs, rhs);
|
|
}
|
|
#endif
|
|
|
|
protected:
|
|
IndicesType m_indices;
|
|
};
|
|
|
|
namespace internal {
|
|
template <int SizeAtCompileTime, int MaxSizeAtCompileTime, typename StorageIndex_, int PacketAccess_>
|
|
struct traits<Map<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, StorageIndex_>, PacketAccess_> >
|
|
: traits<
|
|
Matrix<StorageIndex_, SizeAtCompileTime, SizeAtCompileTime, 0, MaxSizeAtCompileTime, MaxSizeAtCompileTime> > {
|
|
typedef PermutationStorage StorageKind;
|
|
typedef Map<const Matrix<StorageIndex_, SizeAtCompileTime, 1, 0, MaxSizeAtCompileTime, 1>, PacketAccess_> IndicesType;
|
|
typedef StorageIndex_ StorageIndex;
|
|
typedef void Scalar;
|
|
};
|
|
} // namespace internal
|
|
|
|
template <int SizeAtCompileTime, int MaxSizeAtCompileTime, typename StorageIndex_, int PacketAccess_>
|
|
class Map<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, StorageIndex_>, PacketAccess_>
|
|
: public PermutationBase<
|
|
Map<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, StorageIndex_>, PacketAccess_> > {
|
|
typedef PermutationBase<Map> Base;
|
|
typedef internal::traits<Map> Traits;
|
|
|
|
public:
|
|
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
|
typedef typename Traits::IndicesType IndicesType;
|
|
typedef typename IndicesType::Scalar StorageIndex;
|
|
#endif
|
|
|
|
inline Map(const StorageIndex* indicesPtr) : m_indices(indicesPtr) {}
|
|
|
|
inline Map(const StorageIndex* indicesPtr, Index size) : m_indices(indicesPtr, size) {}
|
|
|
|
/** Copies the other permutation into *this */
|
|
template <typename Other>
|
|
Map& operator=(const PermutationBase<Other>& other) {
|
|
return Base::operator=(other.derived());
|
|
}
|
|
|
|
/** Assignment from the Transpositions \a tr */
|
|
template <typename Other>
|
|
Map& operator=(const TranspositionsBase<Other>& tr) {
|
|
return Base::operator=(tr.derived());
|
|
}
|
|
|
|
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
|
/** This is a special case of the templated operator=. Its purpose is to
|
|
* prevent a default operator= from hiding the templated operator=.
|
|
*/
|
|
Map& operator=(const Map& other) {
|
|
m_indices = other.m_indices;
|
|
return *this;
|
|
}
|
|
#endif
|
|
|
|
/** const version of indices(). */
|
|
const IndicesType& indices() const { return m_indices; }
|
|
/** \returns a reference to the stored array representing the permutation. */
|
|
IndicesType& indices() { return m_indices; }
|
|
|
|
protected:
|
|
IndicesType m_indices;
|
|
};
|
|
|
|
template <typename IndicesType_>
|
|
class TranspositionsWrapper;
|
|
namespace internal {
|
|
template <typename IndicesType_>
|
|
struct traits<PermutationWrapper<IndicesType_> > {
|
|
typedef PermutationStorage StorageKind;
|
|
typedef void Scalar;
|
|
typedef typename IndicesType_::Scalar StorageIndex;
|
|
typedef IndicesType_ IndicesType;
|
|
enum {
|
|
RowsAtCompileTime = IndicesType_::SizeAtCompileTime,
|
|
ColsAtCompileTime = IndicesType_::SizeAtCompileTime,
|
|
MaxRowsAtCompileTime = IndicesType::MaxSizeAtCompileTime,
|
|
MaxColsAtCompileTime = IndicesType::MaxSizeAtCompileTime,
|
|
Flags = 0
|
|
};
|
|
};
|
|
} // namespace internal
|
|
|
|
/** \class PermutationWrapper
|
|
* \ingroup Core_Module
|
|
*
|
|
* \brief Class to view a vector of integers as a permutation matrix
|
|
*
|
|
* \tparam IndicesType_ the type of the vector of integer (can be any compatible expression)
|
|
*
|
|
* This class allows to view any vector expression of integers as a permutation matrix.
|
|
*
|
|
* \sa class PermutationBase, class PermutationMatrix
|
|
*/
|
|
template <typename IndicesType_>
|
|
class PermutationWrapper : public PermutationBase<PermutationWrapper<IndicesType_> > {
|
|
typedef PermutationBase<PermutationWrapper> Base;
|
|
typedef internal::traits<PermutationWrapper> Traits;
|
|
|
|
public:
|
|
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
|
typedef typename Traits::IndicesType IndicesType;
|
|
#endif
|
|
|
|
inline PermutationWrapper(const IndicesType& indices) : m_indices(indices) {}
|
|
|
|
/** const version of indices(). */
|
|
const internal::remove_all_t<typename IndicesType::Nested>& indices() const { return m_indices; }
|
|
|
|
protected:
|
|
typename IndicesType::Nested m_indices;
|
|
};
|
|
|
|
/** \returns the matrix with the permutation applied to the columns.
|
|
*/
|
|
template <typename MatrixDerived, typename PermutationDerived>
|
|
EIGEN_DEVICE_FUNC const Product<MatrixDerived, PermutationDerived, AliasFreeProduct> operator*(
|
|
const MatrixBase<MatrixDerived>& matrix, const PermutationBase<PermutationDerived>& permutation) {
|
|
return Product<MatrixDerived, PermutationDerived, AliasFreeProduct>(matrix.derived(), permutation.derived());
|
|
}
|
|
|
|
/** \returns the matrix with the permutation applied to the rows.
|
|
*/
|
|
template <typename PermutationDerived, typename MatrixDerived>
|
|
EIGEN_DEVICE_FUNC const Product<PermutationDerived, MatrixDerived, AliasFreeProduct> operator*(
|
|
const PermutationBase<PermutationDerived>& permutation, const MatrixBase<MatrixDerived>& matrix) {
|
|
return Product<PermutationDerived, MatrixDerived, AliasFreeProduct>(permutation.derived(), matrix.derived());
|
|
}
|
|
|
|
template <typename PermutationType>
|
|
class InverseImpl<PermutationType, PermutationStorage> : public EigenBase<Inverse<PermutationType> > {
|
|
typedef typename PermutationType::PlainPermutationType PlainPermutationType;
|
|
typedef internal::traits<PermutationType> PermTraits;
|
|
|
|
protected:
|
|
InverseImpl() {}
|
|
|
|
public:
|
|
typedef Inverse<PermutationType> InverseType;
|
|
using EigenBase<Inverse<PermutationType> >::derived;
|
|
|
|
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
|
typedef typename PermutationType::DenseMatrixType DenseMatrixType;
|
|
enum {
|
|
RowsAtCompileTime = PermTraits::RowsAtCompileTime,
|
|
ColsAtCompileTime = PermTraits::ColsAtCompileTime,
|
|
MaxRowsAtCompileTime = PermTraits::MaxRowsAtCompileTime,
|
|
MaxColsAtCompileTime = PermTraits::MaxColsAtCompileTime
|
|
};
|
|
#endif
|
|
|
|
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
|
template <typename DenseDerived>
|
|
void evalTo(MatrixBase<DenseDerived>& other) const {
|
|
other.setZero();
|
|
for (Index i = 0; i < derived().rows(); ++i)
|
|
other.coeffRef(i, derived().nestedExpression().indices().coeff(i)) = typename DenseDerived::Scalar(1);
|
|
}
|
|
#endif
|
|
|
|
/** \return the equivalent permutation matrix */
|
|
PlainPermutationType eval() const { return derived(); }
|
|
|
|
DenseMatrixType toDenseMatrix() const { return derived(); }
|
|
|
|
/** \returns the matrix with the inverse permutation applied to the columns.
|
|
*/
|
|
template <typename OtherDerived>
|
|
friend const Product<OtherDerived, InverseType, AliasFreeProduct> operator*(const MatrixBase<OtherDerived>& matrix,
|
|
const InverseType& trPerm) {
|
|
return Product<OtherDerived, InverseType, AliasFreeProduct>(matrix.derived(), trPerm.derived());
|
|
}
|
|
|
|
/** \returns the matrix with the inverse permutation applied to the rows.
|
|
*/
|
|
template <typename OtherDerived>
|
|
const Product<InverseType, OtherDerived, AliasFreeProduct> operator*(const MatrixBase<OtherDerived>& matrix) const {
|
|
return Product<InverseType, OtherDerived, AliasFreeProduct>(derived(), matrix.derived());
|
|
}
|
|
};
|
|
|
|
template <typename Derived>
|
|
const PermutationWrapper<const Derived> MatrixBase<Derived>::asPermutation() const {
|
|
return derived();
|
|
}
|
|
|
|
namespace internal {
|
|
|
|
template <>
|
|
struct AssignmentKind<DenseShape, PermutationShape> {
|
|
typedef EigenBase2EigenBase Kind;
|
|
};
|
|
|
|
} // end namespace internal
|
|
|
|
} // end namespace Eigen
|
|
|
|
#endif // EIGEN_PERMUTATIONMATRIX_H
|