mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-05-02 08:44:12 +08:00
160 lines
5.7 KiB
C++
160 lines
5.7 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2015 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#ifndef EIGEN_SOLVERBASE_H
|
|
#define EIGEN_SOLVERBASE_H
|
|
|
|
// IWYU pragma: private
|
|
#include "./InternalHeaderCheck.h"
|
|
|
|
namespace Eigen {
|
|
|
|
namespace internal {
|
|
|
|
template <typename Derived>
|
|
struct solve_assertion {
|
|
template <bool Transpose_, typename Rhs>
|
|
static void run(const Derived& solver, const Rhs& b) {
|
|
solver.template _check_solve_assertion<Transpose_>(b);
|
|
}
|
|
};
|
|
|
|
template <typename Derived>
|
|
struct solve_assertion<Transpose<Derived>> {
|
|
typedef Transpose<Derived> type;
|
|
|
|
template <bool Transpose_, typename Rhs>
|
|
static void run(const type& transpose, const Rhs& b) {
|
|
internal::solve_assertion<internal::remove_all_t<Derived>>::template run<true>(transpose.nestedExpression(), b);
|
|
}
|
|
};
|
|
|
|
template <typename Scalar, typename Derived>
|
|
struct solve_assertion<CwiseUnaryOp<Eigen::internal::scalar_conjugate_op<Scalar>, const Transpose<Derived>>> {
|
|
typedef CwiseUnaryOp<Eigen::internal::scalar_conjugate_op<Scalar>, const Transpose<Derived>> type;
|
|
|
|
template <bool Transpose_, typename Rhs>
|
|
static void run(const type& adjoint, const Rhs& b) {
|
|
internal::solve_assertion<internal::remove_all_t<Transpose<Derived>>>::template run<true>(
|
|
adjoint.nestedExpression(), b);
|
|
}
|
|
};
|
|
} // end namespace internal
|
|
|
|
/** \class SolverBase
|
|
* \brief A base class for matrix decomposition and solvers
|
|
*
|
|
* \tparam Derived the actual type of the decomposition/solver.
|
|
*
|
|
* Any matrix decomposition inheriting this base class provide the following API:
|
|
*
|
|
* \code
|
|
* MatrixType A, b, x;
|
|
* DecompositionType dec(A);
|
|
* x = dec.solve(b); // solve A * x = b
|
|
* x = dec.transpose().solve(b); // solve A^T * x = b
|
|
* x = dec.adjoint().solve(b); // solve A' * x = b
|
|
* \endcode
|
|
*
|
|
* \warning Currently, any other usage of transpose() and adjoint() are not supported and will produce compilation
|
|
* errors.
|
|
*
|
|
* \sa class PartialPivLU, class FullPivLU, class HouseholderQR, class ColPivHouseholderQR, class FullPivHouseholderQR,
|
|
* class CompleteOrthogonalDecomposition, class LLT, class LDLT, class SVDBase
|
|
*/
|
|
template <typename Derived>
|
|
class SolverBase : public EigenBase<Derived> {
|
|
public:
|
|
typedef EigenBase<Derived> Base;
|
|
typedef typename internal::traits<Derived>::Scalar Scalar;
|
|
typedef Scalar CoeffReturnType;
|
|
|
|
template <typename Derived_>
|
|
friend struct internal::solve_assertion;
|
|
|
|
enum {
|
|
RowsAtCompileTime = internal::traits<Derived>::RowsAtCompileTime,
|
|
ColsAtCompileTime = internal::traits<Derived>::ColsAtCompileTime,
|
|
SizeAtCompileTime = (internal::size_of_xpr_at_compile_time<Derived>::ret),
|
|
MaxRowsAtCompileTime = internal::traits<Derived>::MaxRowsAtCompileTime,
|
|
MaxColsAtCompileTime = internal::traits<Derived>::MaxColsAtCompileTime,
|
|
MaxSizeAtCompileTime = internal::size_at_compile_time(internal::traits<Derived>::MaxRowsAtCompileTime,
|
|
internal::traits<Derived>::MaxColsAtCompileTime),
|
|
IsVectorAtCompileTime =
|
|
internal::traits<Derived>::MaxRowsAtCompileTime == 1 || internal::traits<Derived>::MaxColsAtCompileTime == 1,
|
|
NumDimensions = int(MaxSizeAtCompileTime) == 1 ? 0
|
|
: bool(IsVectorAtCompileTime) ? 1
|
|
: 2
|
|
};
|
|
|
|
/** Default constructor */
|
|
SolverBase() {}
|
|
|
|
~SolverBase() {}
|
|
|
|
using Base::derived;
|
|
|
|
/** \returns an expression of the solution x of \f$ A x = b \f$ using the current decomposition of A.
|
|
*/
|
|
template <typename Rhs>
|
|
inline const Solve<Derived, Rhs> solve(const MatrixBase<Rhs>& b) const {
|
|
internal::solve_assertion<internal::remove_all_t<Derived>>::template run<false>(derived(), b);
|
|
return Solve<Derived, Rhs>(derived(), b.derived());
|
|
}
|
|
|
|
/** \internal the return type of transpose() */
|
|
typedef Transpose<const Derived> ConstTransposeReturnType;
|
|
/** \returns an expression of the transposed of the factored matrix.
|
|
*
|
|
* A typical usage is to solve for the transposed problem A^T x = b:
|
|
* \code x = dec.transpose().solve(b); \endcode
|
|
*
|
|
* \sa adjoint(), solve()
|
|
*/
|
|
inline const ConstTransposeReturnType transpose() const { return ConstTransposeReturnType(derived()); }
|
|
|
|
/** \internal the return type of adjoint() */
|
|
typedef std::conditional_t<NumTraits<Scalar>::IsComplex,
|
|
CwiseUnaryOp<internal::scalar_conjugate_op<Scalar>, const ConstTransposeReturnType>,
|
|
const ConstTransposeReturnType>
|
|
AdjointReturnType;
|
|
/** \returns an expression of the adjoint of the factored matrix
|
|
*
|
|
* A typical usage is to solve for the adjoint problem A' x = b:
|
|
* \code x = dec.adjoint().solve(b); \endcode
|
|
*
|
|
* For real scalar types, this function is equivalent to transpose().
|
|
*
|
|
* \sa transpose(), solve()
|
|
*/
|
|
inline const AdjointReturnType adjoint() const { return AdjointReturnType(derived().transpose()); }
|
|
|
|
protected:
|
|
template <bool Transpose_, typename Rhs>
|
|
void _check_solve_assertion(const Rhs& b) const {
|
|
EIGEN_ONLY_USED_FOR_DEBUG(b);
|
|
eigen_assert(derived().m_isInitialized && "Solver is not initialized.");
|
|
eigen_assert((Transpose_ ? derived().cols() : derived().rows()) == b.rows() &&
|
|
"SolverBase::solve(): invalid number of rows of the right hand side matrix b");
|
|
}
|
|
};
|
|
|
|
namespace internal {
|
|
|
|
template <typename Derived>
|
|
struct generic_xpr_base<Derived, MatrixXpr, SolverStorage> {
|
|
typedef SolverBase<Derived> type;
|
|
};
|
|
|
|
} // end namespace internal
|
|
|
|
} // end namespace Eigen
|
|
|
|
#endif // EIGEN_SOLVERBASE_H
|