mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-05-06 19:29:08 +08:00
573 lines
22 KiB
C++
573 lines
22 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
// Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#ifndef EIGEN_EIGENSOLVER_H
|
|
#define EIGEN_EIGENSOLVER_H
|
|
|
|
#include "./RealSchur.h"
|
|
|
|
// IWYU pragma: private
|
|
#include "./InternalHeaderCheck.h"
|
|
|
|
namespace Eigen {
|
|
|
|
/** \eigenvalues_module \ingroup Eigenvalues_Module
|
|
*
|
|
*
|
|
* \class EigenSolver
|
|
*
|
|
* \brief Computes eigenvalues and eigenvectors of general matrices
|
|
*
|
|
* \tparam MatrixType_ the type of the matrix of which we are computing the
|
|
* eigendecomposition; this is expected to be an instantiation of the Matrix
|
|
* class template. Currently, only real matrices are supported.
|
|
*
|
|
* The eigenvalues and eigenvectors of a matrix \f$ A \f$ are scalars
|
|
* \f$ \lambda \f$ and vectors \f$ v \f$ such that \f$ Av = \lambda v \f$. If
|
|
* \f$ D \f$ is a diagonal matrix with the eigenvalues on the diagonal, and
|
|
* \f$ V \f$ is a matrix with the eigenvectors as its columns, then \f$ A V =
|
|
* V D \f$. The matrix \f$ V \f$ is almost always invertible, in which case we
|
|
* have \f$ A = V D V^{-1} \f$. This is called the eigendecomposition.
|
|
*
|
|
* The eigenvalues and eigenvectors of a matrix may be complex, even when the
|
|
* matrix is real. However, we can choose real matrices \f$ V \f$ and \f$ D
|
|
* \f$ satisfying \f$ A V = V D \f$, just like the eigendecomposition, if the
|
|
* matrix \f$ D \f$ is not required to be diagonal, but if it is allowed to
|
|
* have blocks of the form
|
|
* \f[ \begin{bmatrix} u & v \\ -v & u \end{bmatrix} \f]
|
|
* (where \f$ u \f$ and \f$ v \f$ are real numbers) on the diagonal. These
|
|
* blocks correspond to complex eigenvalue pairs \f$ u \pm iv \f$. We call
|
|
* this variant of the eigendecomposition the pseudo-eigendecomposition.
|
|
*
|
|
* Call the function compute() to compute the eigenvalues and eigenvectors of
|
|
* a given matrix. Alternatively, you can use the
|
|
* EigenSolver(const MatrixType&, bool) constructor which computes the
|
|
* eigenvalues and eigenvectors at construction time. Once the eigenvalue and
|
|
* eigenvectors are computed, they can be retrieved with the eigenvalues() and
|
|
* eigenvectors() functions. The pseudoEigenvalueMatrix() and
|
|
* pseudoEigenvectors() methods allow the construction of the
|
|
* pseudo-eigendecomposition.
|
|
*
|
|
* The documentation for EigenSolver(const MatrixType&, bool) contains an
|
|
* example of the typical use of this class.
|
|
*
|
|
* \note The implementation is adapted from
|
|
* <a href="http://math.nist.gov/javanumerics/jama/">JAMA</a> (public domain).
|
|
* Their code is based on EISPACK.
|
|
*
|
|
* \sa MatrixBase::eigenvalues(), class ComplexEigenSolver, class SelfAdjointEigenSolver
|
|
*/
|
|
template <typename MatrixType_>
|
|
class EigenSolver {
|
|
public:
|
|
/** \brief Synonym for the template parameter \p MatrixType_. */
|
|
typedef MatrixType_ MatrixType;
|
|
|
|
enum {
|
|
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
|
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
|
Options = internal::traits<MatrixType>::Options,
|
|
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
|
|
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
|
|
};
|
|
|
|
/** \brief Scalar type for matrices of type #MatrixType. */
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
|
typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
|
|
|
|
/** \brief Complex scalar type for #MatrixType.
|
|
*
|
|
* This is \c std::complex<Scalar> if #Scalar is real (e.g.,
|
|
* \c float or \c double) and just \c Scalar if #Scalar is
|
|
* complex.
|
|
*/
|
|
typedef std::complex<RealScalar> ComplexScalar;
|
|
|
|
/** \brief Type for vector of eigenvalues as returned by eigenvalues().
|
|
*
|
|
* This is a column vector with entries of type #ComplexScalar.
|
|
* The length of the vector is the size of #MatrixType.
|
|
*/
|
|
typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> EigenvalueType;
|
|
|
|
/** \brief Type for matrix of eigenvectors as returned by eigenvectors().
|
|
*
|
|
* This is a square matrix with entries of type #ComplexScalar.
|
|
* The size is the same as the size of #MatrixType.
|
|
*/
|
|
typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime,
|
|
MaxColsAtCompileTime>
|
|
EigenvectorsType;
|
|
|
|
/** \brief Default constructor.
|
|
*
|
|
* The default constructor is useful in cases in which the user intends to
|
|
* perform decompositions via EigenSolver::compute(const MatrixType&, bool).
|
|
*
|
|
* \sa compute() for an example.
|
|
*/
|
|
EigenSolver()
|
|
: m_eivec(), m_eivalues(), m_isInitialized(false), m_eigenvectorsOk(false), m_realSchur(), m_matT(), m_tmp() {}
|
|
|
|
/** \brief Default constructor with memory preallocation
|
|
*
|
|
* Like the default constructor but with preallocation of the internal data
|
|
* according to the specified problem \a size.
|
|
* \sa EigenSolver()
|
|
*/
|
|
explicit EigenSolver(Index size)
|
|
: m_eivec(size, size),
|
|
m_eivalues(size),
|
|
m_isInitialized(false),
|
|
m_eigenvectorsOk(false),
|
|
m_realSchur(size),
|
|
m_matT(size, size),
|
|
m_tmp(size) {}
|
|
|
|
/** \brief Constructor; computes eigendecomposition of given matrix.
|
|
*
|
|
* \param[in] matrix Square matrix whose eigendecomposition is to be computed.
|
|
* \param[in] computeEigenvectors If true, both the eigenvectors and the
|
|
* eigenvalues are computed; if false, only the eigenvalues are
|
|
* computed.
|
|
*
|
|
* This constructor calls compute() to compute the eigenvalues
|
|
* and eigenvectors.
|
|
*
|
|
* Example: \include EigenSolver_EigenSolver_MatrixType.cpp
|
|
* Output: \verbinclude EigenSolver_EigenSolver_MatrixType.out
|
|
*
|
|
* \sa compute()
|
|
*/
|
|
template <typename InputType>
|
|
explicit EigenSolver(const EigenBase<InputType>& matrix, bool computeEigenvectors = true)
|
|
: m_eivec(matrix.rows(), matrix.cols()),
|
|
m_eivalues(matrix.cols()),
|
|
m_isInitialized(false),
|
|
m_eigenvectorsOk(false),
|
|
m_realSchur(matrix.cols()),
|
|
m_matT(matrix.rows(), matrix.cols()),
|
|
m_tmp(matrix.cols()) {
|
|
compute(matrix.derived(), computeEigenvectors);
|
|
}
|
|
|
|
/** \brief Returns the eigenvectors of given matrix.
|
|
*
|
|
* \returns %Matrix whose columns are the (possibly complex) eigenvectors.
|
|
*
|
|
* \pre Either the constructor
|
|
* EigenSolver(const MatrixType&,bool) or the member function
|
|
* compute(const MatrixType&, bool) has been called before, and
|
|
* \p computeEigenvectors was set to true (the default).
|
|
*
|
|
* Column \f$ k \f$ of the returned matrix is an eigenvector corresponding
|
|
* to eigenvalue number \f$ k \f$ as returned by eigenvalues(). The
|
|
* eigenvectors are normalized to have (Euclidean) norm equal to one. The
|
|
* matrix returned by this function is the matrix \f$ V \f$ in the
|
|
* eigendecomposition \f$ A = V D V^{-1} \f$, if it exists.
|
|
*
|
|
* Example: \include EigenSolver_eigenvectors.cpp
|
|
* Output: \verbinclude EigenSolver_eigenvectors.out
|
|
*
|
|
* \sa eigenvalues(), pseudoEigenvectors()
|
|
*/
|
|
EigenvectorsType eigenvectors() const;
|
|
|
|
/** \brief Returns the pseudo-eigenvectors of given matrix.
|
|
*
|
|
* \returns Const reference to matrix whose columns are the pseudo-eigenvectors.
|
|
*
|
|
* \pre Either the constructor
|
|
* EigenSolver(const MatrixType&,bool) or the member function
|
|
* compute(const MatrixType&, bool) has been called before, and
|
|
* \p computeEigenvectors was set to true (the default).
|
|
*
|
|
* The real matrix \f$ V \f$ returned by this function and the
|
|
* block-diagonal matrix \f$ D \f$ returned by pseudoEigenvalueMatrix()
|
|
* satisfy \f$ AV = VD \f$.
|
|
*
|
|
* Example: \include EigenSolver_pseudoEigenvectors.cpp
|
|
* Output: \verbinclude EigenSolver_pseudoEigenvectors.out
|
|
*
|
|
* \sa pseudoEigenvalueMatrix(), eigenvectors()
|
|
*/
|
|
const MatrixType& pseudoEigenvectors() const {
|
|
eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
|
|
eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
|
|
return m_eivec;
|
|
}
|
|
|
|
/** \brief Returns the block-diagonal matrix in the pseudo-eigendecomposition.
|
|
*
|
|
* \returns A block-diagonal matrix.
|
|
*
|
|
* \pre Either the constructor
|
|
* EigenSolver(const MatrixType&,bool) or the member function
|
|
* compute(const MatrixType&, bool) has been called before.
|
|
*
|
|
* The matrix \f$ D \f$ returned by this function is real and
|
|
* block-diagonal. The blocks on the diagonal are either 1-by-1 or 2-by-2
|
|
* blocks of the form
|
|
* \f$ \begin{bmatrix} u & v \\ -v & u \end{bmatrix} \f$.
|
|
* These blocks are not sorted in any particular order.
|
|
* The matrix \f$ D \f$ and the matrix \f$ V \f$ returned by
|
|
* pseudoEigenvectors() satisfy \f$ AV = VD \f$.
|
|
*
|
|
* \sa pseudoEigenvectors() for an example, eigenvalues()
|
|
*/
|
|
MatrixType pseudoEigenvalueMatrix() const;
|
|
|
|
/** \brief Returns the eigenvalues of given matrix.
|
|
*
|
|
* \returns A const reference to the column vector containing the eigenvalues.
|
|
*
|
|
* \pre Either the constructor
|
|
* EigenSolver(const MatrixType&,bool) or the member function
|
|
* compute(const MatrixType&, bool) has been called before.
|
|
*
|
|
* The eigenvalues are repeated according to their algebraic multiplicity,
|
|
* so there are as many eigenvalues as rows in the matrix. The eigenvalues
|
|
* are not sorted in any particular order.
|
|
*
|
|
* Example: \include EigenSolver_eigenvalues.cpp
|
|
* Output: \verbinclude EigenSolver_eigenvalues.out
|
|
*
|
|
* \sa eigenvectors(), pseudoEigenvalueMatrix(),
|
|
* MatrixBase::eigenvalues()
|
|
*/
|
|
const EigenvalueType& eigenvalues() const {
|
|
eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
|
|
return m_eivalues;
|
|
}
|
|
|
|
/** \brief Computes eigendecomposition of given matrix.
|
|
*
|
|
* \param[in] matrix Square matrix whose eigendecomposition is to be computed.
|
|
* \param[in] computeEigenvectors If true, both the eigenvectors and the
|
|
* eigenvalues are computed; if false, only the eigenvalues are
|
|
* computed.
|
|
* \returns Reference to \c *this
|
|
*
|
|
* This function computes the eigenvalues of the real matrix \p matrix.
|
|
* The eigenvalues() function can be used to retrieve them. If
|
|
* \p computeEigenvectors is true, then the eigenvectors are also computed
|
|
* and can be retrieved by calling eigenvectors().
|
|
*
|
|
* The matrix is first reduced to real Schur form using the RealSchur
|
|
* class. The Schur decomposition is then used to compute the eigenvalues
|
|
* and eigenvectors.
|
|
*
|
|
* The cost of the computation is dominated by the cost of the
|
|
* Schur decomposition, which is very approximately \f$ 25n^3 \f$
|
|
* (where \f$ n \f$ is the size of the matrix) if \p computeEigenvectors
|
|
* is true, and \f$ 10n^3 \f$ if \p computeEigenvectors is false.
|
|
*
|
|
* This method reuses of the allocated data in the EigenSolver object.
|
|
*
|
|
* Example: \include EigenSolver_compute.cpp
|
|
* Output: \verbinclude EigenSolver_compute.out
|
|
*/
|
|
template <typename InputType>
|
|
EigenSolver& compute(const EigenBase<InputType>& matrix, bool computeEigenvectors = true);
|
|
|
|
/** \returns NumericalIssue if the input contains INF or NaN values or overflow occurred. Returns Success otherwise.
|
|
*/
|
|
ComputationInfo info() const {
|
|
eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
|
|
return m_info;
|
|
}
|
|
|
|
/** \brief Sets the maximum number of iterations allowed. */
|
|
EigenSolver& setMaxIterations(Index maxIters) {
|
|
m_realSchur.setMaxIterations(maxIters);
|
|
return *this;
|
|
}
|
|
|
|
/** \brief Returns the maximum number of iterations. */
|
|
Index getMaxIterations() { return m_realSchur.getMaxIterations(); }
|
|
|
|
private:
|
|
void doComputeEigenvectors();
|
|
|
|
protected:
|
|
static void check_template_parameters() {
|
|
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
|
|
EIGEN_STATIC_ASSERT(!NumTraits<Scalar>::IsComplex, NUMERIC_TYPE_MUST_BE_REAL);
|
|
}
|
|
|
|
MatrixType m_eivec;
|
|
EigenvalueType m_eivalues;
|
|
bool m_isInitialized;
|
|
bool m_eigenvectorsOk;
|
|
ComputationInfo m_info;
|
|
RealSchur<MatrixType> m_realSchur;
|
|
MatrixType m_matT;
|
|
|
|
typedef Matrix<Scalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> ColumnVectorType;
|
|
ColumnVectorType m_tmp;
|
|
};
|
|
|
|
template <typename MatrixType>
|
|
MatrixType EigenSolver<MatrixType>::pseudoEigenvalueMatrix() const {
|
|
eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
|
|
const RealScalar precision = RealScalar(2) * NumTraits<RealScalar>::epsilon();
|
|
Index n = m_eivalues.rows();
|
|
MatrixType matD = MatrixType::Zero(n, n);
|
|
for (Index i = 0; i < n; ++i) {
|
|
if (internal::isMuchSmallerThan(numext::imag(m_eivalues.coeff(i)), numext::real(m_eivalues.coeff(i)), precision))
|
|
matD.coeffRef(i, i) = numext::real(m_eivalues.coeff(i));
|
|
else {
|
|
matD.template block<2, 2>(i, i) << numext::real(m_eivalues.coeff(i)), numext::imag(m_eivalues.coeff(i)),
|
|
-numext::imag(m_eivalues.coeff(i)), numext::real(m_eivalues.coeff(i));
|
|
++i;
|
|
}
|
|
}
|
|
return matD;
|
|
}
|
|
|
|
template <typename MatrixType>
|
|
typename EigenSolver<MatrixType>::EigenvectorsType EigenSolver<MatrixType>::eigenvectors() const {
|
|
eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
|
|
eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
|
|
const RealScalar precision = RealScalar(2) * NumTraits<RealScalar>::epsilon();
|
|
Index n = m_eivec.cols();
|
|
EigenvectorsType matV(n, n);
|
|
for (Index j = 0; j < n; ++j) {
|
|
if (internal::isMuchSmallerThan(numext::imag(m_eivalues.coeff(j)), numext::real(m_eivalues.coeff(j)), precision) ||
|
|
j + 1 == n) {
|
|
// we have a real eigen value
|
|
matV.col(j) = m_eivec.col(j).template cast<ComplexScalar>();
|
|
matV.col(j).normalize();
|
|
} else {
|
|
// we have a pair of complex eigen values
|
|
for (Index i = 0; i < n; ++i) {
|
|
matV.coeffRef(i, j) = ComplexScalar(m_eivec.coeff(i, j), m_eivec.coeff(i, j + 1));
|
|
matV.coeffRef(i, j + 1) = ComplexScalar(m_eivec.coeff(i, j), -m_eivec.coeff(i, j + 1));
|
|
}
|
|
matV.col(j).normalize();
|
|
matV.col(j + 1).normalize();
|
|
++j;
|
|
}
|
|
}
|
|
return matV;
|
|
}
|
|
|
|
template <typename MatrixType>
|
|
template <typename InputType>
|
|
EigenSolver<MatrixType>& EigenSolver<MatrixType>::compute(const EigenBase<InputType>& matrix,
|
|
bool computeEigenvectors) {
|
|
check_template_parameters();
|
|
|
|
using numext::isfinite;
|
|
using std::abs;
|
|
using std::sqrt;
|
|
eigen_assert(matrix.cols() == matrix.rows());
|
|
|
|
// Reduce to real Schur form.
|
|
m_realSchur.compute(matrix.derived(), computeEigenvectors);
|
|
|
|
m_info = m_realSchur.info();
|
|
|
|
if (m_info == Success) {
|
|
m_matT = m_realSchur.matrixT();
|
|
if (computeEigenvectors) m_eivec = m_realSchur.matrixU();
|
|
|
|
// Compute eigenvalues from matT
|
|
m_eivalues.resize(matrix.cols());
|
|
Index i = 0;
|
|
while (i < matrix.cols()) {
|
|
if (i == matrix.cols() - 1 || m_matT.coeff(i + 1, i) == Scalar(0)) {
|
|
m_eivalues.coeffRef(i) = m_matT.coeff(i, i);
|
|
if (!(isfinite)(m_eivalues.coeffRef(i))) {
|
|
m_isInitialized = true;
|
|
m_eigenvectorsOk = false;
|
|
m_info = NumericalIssue;
|
|
return *this;
|
|
}
|
|
++i;
|
|
} else {
|
|
Scalar p = Scalar(0.5) * (m_matT.coeff(i, i) - m_matT.coeff(i + 1, i + 1));
|
|
Scalar z;
|
|
// Compute z = sqrt(abs(p * p + m_matT.coeff(i+1, i) * m_matT.coeff(i, i+1)));
|
|
// without overflow
|
|
{
|
|
Scalar t0 = m_matT.coeff(i + 1, i);
|
|
Scalar t1 = m_matT.coeff(i, i + 1);
|
|
Scalar maxval = numext::maxi<Scalar>(abs(p), numext::maxi<Scalar>(abs(t0), abs(t1)));
|
|
t0 /= maxval;
|
|
t1 /= maxval;
|
|
Scalar p0 = p / maxval;
|
|
z = maxval * sqrt(abs(p0 * p0 + t0 * t1));
|
|
}
|
|
|
|
m_eivalues.coeffRef(i) = ComplexScalar(m_matT.coeff(i + 1, i + 1) + p, z);
|
|
m_eivalues.coeffRef(i + 1) = ComplexScalar(m_matT.coeff(i + 1, i + 1) + p, -z);
|
|
if (!((isfinite)(m_eivalues.coeffRef(i)) && (isfinite)(m_eivalues.coeffRef(i + 1)))) {
|
|
m_isInitialized = true;
|
|
m_eigenvectorsOk = false;
|
|
m_info = NumericalIssue;
|
|
return *this;
|
|
}
|
|
i += 2;
|
|
}
|
|
}
|
|
|
|
// Compute eigenvectors.
|
|
if (computeEigenvectors) doComputeEigenvectors();
|
|
}
|
|
|
|
m_isInitialized = true;
|
|
m_eigenvectorsOk = computeEigenvectors;
|
|
|
|
return *this;
|
|
}
|
|
|
|
template <typename MatrixType>
|
|
void EigenSolver<MatrixType>::doComputeEigenvectors() {
|
|
using std::abs;
|
|
const Index size = m_eivec.cols();
|
|
const Scalar eps = NumTraits<Scalar>::epsilon();
|
|
|
|
// inefficient! this is already computed in RealSchur
|
|
Scalar norm(0);
|
|
for (Index j = 0; j < size; ++j) {
|
|
norm += m_matT.row(j).segment((std::max)(j - 1, Index(0)), size - (std::max)(j - 1, Index(0))).cwiseAbs().sum();
|
|
}
|
|
|
|
// Backsubstitute to find vectors of upper triangular form
|
|
if (norm == Scalar(0)) {
|
|
return;
|
|
}
|
|
|
|
for (Index n = size - 1; n >= 0; n--) {
|
|
Scalar p = m_eivalues.coeff(n).real();
|
|
Scalar q = m_eivalues.coeff(n).imag();
|
|
|
|
// Scalar vector
|
|
if (q == Scalar(0)) {
|
|
Scalar lastr(0), lastw(0);
|
|
Index l = n;
|
|
|
|
m_matT.coeffRef(n, n) = Scalar(1);
|
|
for (Index i = n - 1; i >= 0; i--) {
|
|
Scalar w = m_matT.coeff(i, i) - p;
|
|
Scalar r = m_matT.row(i).segment(l, n - l + 1).dot(m_matT.col(n).segment(l, n - l + 1));
|
|
|
|
if (m_eivalues.coeff(i).imag() < Scalar(0)) {
|
|
lastw = w;
|
|
lastr = r;
|
|
} else {
|
|
l = i;
|
|
if (m_eivalues.coeff(i).imag() == Scalar(0)) {
|
|
if (w != Scalar(0))
|
|
m_matT.coeffRef(i, n) = -r / w;
|
|
else
|
|
m_matT.coeffRef(i, n) = -r / (eps * norm);
|
|
} else // Solve real equations
|
|
{
|
|
Scalar x = m_matT.coeff(i, i + 1);
|
|
Scalar y = m_matT.coeff(i + 1, i);
|
|
Scalar denom = (m_eivalues.coeff(i).real() - p) * (m_eivalues.coeff(i).real() - p) +
|
|
m_eivalues.coeff(i).imag() * m_eivalues.coeff(i).imag();
|
|
Scalar t = (x * lastr - lastw * r) / denom;
|
|
m_matT.coeffRef(i, n) = t;
|
|
if (abs(x) > abs(lastw))
|
|
m_matT.coeffRef(i + 1, n) = (-r - w * t) / x;
|
|
else
|
|
m_matT.coeffRef(i + 1, n) = (-lastr - y * t) / lastw;
|
|
}
|
|
|
|
// Overflow control
|
|
Scalar t = abs(m_matT.coeff(i, n));
|
|
if ((eps * t) * t > Scalar(1)) m_matT.col(n).tail(size - i) /= t;
|
|
}
|
|
}
|
|
} else if (q < Scalar(0) && n > 0) // Complex vector
|
|
{
|
|
Scalar lastra(0), lastsa(0), lastw(0);
|
|
Index l = n - 1;
|
|
|
|
// Last vector component imaginary so matrix is triangular
|
|
if (abs(m_matT.coeff(n, n - 1)) > abs(m_matT.coeff(n - 1, n))) {
|
|
m_matT.coeffRef(n - 1, n - 1) = q / m_matT.coeff(n, n - 1);
|
|
m_matT.coeffRef(n - 1, n) = -(m_matT.coeff(n, n) - p) / m_matT.coeff(n, n - 1);
|
|
} else {
|
|
ComplexScalar cc =
|
|
ComplexScalar(Scalar(0), -m_matT.coeff(n - 1, n)) / ComplexScalar(m_matT.coeff(n - 1, n - 1) - p, q);
|
|
m_matT.coeffRef(n - 1, n - 1) = numext::real(cc);
|
|
m_matT.coeffRef(n - 1, n) = numext::imag(cc);
|
|
}
|
|
m_matT.coeffRef(n, n - 1) = Scalar(0);
|
|
m_matT.coeffRef(n, n) = Scalar(1);
|
|
for (Index i = n - 2; i >= 0; i--) {
|
|
Scalar ra = m_matT.row(i).segment(l, n - l + 1).dot(m_matT.col(n - 1).segment(l, n - l + 1));
|
|
Scalar sa = m_matT.row(i).segment(l, n - l + 1).dot(m_matT.col(n).segment(l, n - l + 1));
|
|
Scalar w = m_matT.coeff(i, i) - p;
|
|
|
|
if (m_eivalues.coeff(i).imag() < Scalar(0)) {
|
|
lastw = w;
|
|
lastra = ra;
|
|
lastsa = sa;
|
|
} else {
|
|
l = i;
|
|
if (m_eivalues.coeff(i).imag() == RealScalar(0)) {
|
|
ComplexScalar cc = ComplexScalar(-ra, -sa) / ComplexScalar(w, q);
|
|
m_matT.coeffRef(i, n - 1) = numext::real(cc);
|
|
m_matT.coeffRef(i, n) = numext::imag(cc);
|
|
} else {
|
|
// Solve complex equations
|
|
Scalar x = m_matT.coeff(i, i + 1);
|
|
Scalar y = m_matT.coeff(i + 1, i);
|
|
Scalar vr = (m_eivalues.coeff(i).real() - p) * (m_eivalues.coeff(i).real() - p) +
|
|
m_eivalues.coeff(i).imag() * m_eivalues.coeff(i).imag() - q * q;
|
|
Scalar vi = (m_eivalues.coeff(i).real() - p) * Scalar(2) * q;
|
|
if ((vr == Scalar(0)) && (vi == Scalar(0)))
|
|
vr = eps * norm * (abs(w) + abs(q) + abs(x) + abs(y) + abs(lastw));
|
|
|
|
ComplexScalar cc = ComplexScalar(x * lastra - lastw * ra + q * sa, x * lastsa - lastw * sa - q * ra) /
|
|
ComplexScalar(vr, vi);
|
|
m_matT.coeffRef(i, n - 1) = numext::real(cc);
|
|
m_matT.coeffRef(i, n) = numext::imag(cc);
|
|
if (abs(x) > (abs(lastw) + abs(q))) {
|
|
m_matT.coeffRef(i + 1, n - 1) = (-ra - w * m_matT.coeff(i, n - 1) + q * m_matT.coeff(i, n)) / x;
|
|
m_matT.coeffRef(i + 1, n) = (-sa - w * m_matT.coeff(i, n) - q * m_matT.coeff(i, n - 1)) / x;
|
|
} else {
|
|
cc = ComplexScalar(-lastra - y * m_matT.coeff(i, n - 1), -lastsa - y * m_matT.coeff(i, n)) /
|
|
ComplexScalar(lastw, q);
|
|
m_matT.coeffRef(i + 1, n - 1) = numext::real(cc);
|
|
m_matT.coeffRef(i + 1, n) = numext::imag(cc);
|
|
}
|
|
}
|
|
|
|
// Overflow control
|
|
Scalar t = numext::maxi<Scalar>(abs(m_matT.coeff(i, n - 1)), abs(m_matT.coeff(i, n)));
|
|
if ((eps * t) * t > Scalar(1)) m_matT.block(i, n - 1, size - i, 2) /= t;
|
|
}
|
|
}
|
|
|
|
// We handled a pair of complex conjugate eigenvalues, so need to skip them both
|
|
n--;
|
|
} else {
|
|
eigen_assert(0 && "Internal bug in EigenSolver (INF or NaN has not been detected)"); // this should not happen
|
|
}
|
|
}
|
|
|
|
// Back transformation to get eigenvectors of original matrix
|
|
for (Index j = size - 1; j >= 0; j--) {
|
|
m_tmp.noalias() = m_eivec.leftCols(j + 1) * m_matT.col(j).segment(0, j + 1);
|
|
m_eivec.col(j) = m_tmp;
|
|
}
|
|
}
|
|
|
|
} // end namespace Eigen
|
|
|
|
#endif // EIGEN_EIGENSOLVER_H
|