eigen/Eigen/src/Core/CoreEvaluators.h

441 lines
12 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2011 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2011 Jitse Niesen <jitse@maths.leeds.ac.uk>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_COREEVALUATORS_H
#define EIGEN_COREEVALUATORS_H
namespace internal {
template<typename T>
struct evaluator_impl {};
template<typename T>
struct evaluator
{
typedef evaluator_impl<T> type;
};
template<typename T>
struct evaluator<const T>
{
typedef evaluator_impl<T> type;
};
// -------------------- Transpose --------------------
template<typename ExpressionType>
struct evaluator_impl<Transpose<ExpressionType> >
{
typedef Transpose<ExpressionType> TransposeType;
evaluator_impl(const TransposeType& t) : m_argImpl(t.nestedExpression()) {}
typedef typename TransposeType::Index Index;
typename TransposeType::CoeffReturnType coeff(Index i, Index j) const
{
return m_argImpl.coeff(j, i);
}
typename TransposeType::CoeffReturnType coeff(Index index) const
{
return m_argImpl.coeff(index);
}
typename TransposeType::Scalar& coeffRef(Index i, Index j)
{
return m_argImpl.coeffRef(j, i);
}
typename TransposeType::Scalar& coeffRef(Index index)
{
return m_argImpl.coeffRef(index);
}
// TODO: Difference between PacketScalar and PacketReturnType?
template<int LoadMode>
const typename ExpressionType::PacketScalar packet(Index row, Index col) const
{
return m_argImpl.template packet<LoadMode>(col, row);
}
template<int LoadMode>
const typename ExpressionType::PacketScalar packet(Index index) const
{
return m_argImpl.template packet<LoadMode>(index);
}
template<int StoreMode>
void writePacket(Index row, Index col, const typename ExpressionType::PacketScalar& x)
{
m_argImpl.template writePacket<StoreMode>(col, row, x);
}
template<int StoreMode>
void writePacket(Index index, const typename ExpressionType::PacketScalar& x)
{
m_argImpl.template writePacket<StoreMode>(index, x);
}
protected:
typename evaluator<ExpressionType>::type m_argImpl;
};
// -------------------- Matrix --------------------
template<typename Scalar, int Rows, int Cols, int Options, int MaxRows, int MaxCols>
struct evaluator_impl<Matrix<Scalar, Rows, Cols, Options, MaxRows, MaxCols> >
{
typedef Matrix<Scalar, Rows, Cols, Options, MaxRows, MaxCols> MatrixType;
evaluator_impl(const MatrixType& m) : m_matrix(m) {}
typedef typename MatrixType::Index Index;
typename MatrixType::CoeffReturnType coeff(Index i, Index j) const
{
return m_matrix.coeff(i, j);
}
typename MatrixType::CoeffReturnType coeff(Index index) const
{
return m_matrix.coeff(index);
}
typename MatrixType::Scalar& coeffRef(Index i, Index j)
{
return m_matrix.const_cast_derived().coeffRef(i, j);
}
typename MatrixType::Scalar& coeffRef(Index index)
{
return m_matrix.const_cast_derived().coeffRef(index);
}
template<int LoadMode>
typename MatrixType::PacketReturnType packet(Index row, Index col) const
{
return m_matrix.template packet<LoadMode>(row, col);
}
template<int LoadMode>
typename MatrixType::PacketReturnType packet(Index index) const
{
// eigen_internal_assert(index >= 0 && index < size());
return m_matrix.template packet<LoadMode>(index);
}
template<int StoreMode>
void writePacket(Index row, Index col, const typename MatrixType::PacketScalar& x)
{
m_matrix.const_cast_derived().template writePacket<StoreMode>(row, col, x);
}
template<int StoreMode>
void writePacket(Index index, const typename MatrixType::PacketScalar& x)
{
// eigen_internal_assert(index >= 0 && index < size());
m_matrix.const_cast_derived().template writePacket<StoreMode>(index, x);
}
protected:
const MatrixType &m_matrix;
};
// -------------------- Array --------------------
// TODO: should be sharing code with Matrix case
template<typename Scalar, int Rows, int Cols, int Options, int MaxRows, int MaxCols>
struct evaluator_impl<Array<Scalar, Rows, Cols, Options, MaxRows, MaxCols> >
{
typedef Array<Scalar, Rows, Cols, Options, MaxRows, MaxCols> ArrayType;
evaluator_impl(const ArrayType& a) : m_array(a) {}
typedef typename ArrayType::Index Index;
typename ArrayType::CoeffReturnType coeff(Index i, Index j) const
{
return m_array.coeff(i, j);
}
typename ArrayType::CoeffReturnType coeff(Index index) const
{
return m_array.coeff(index);
}
typename ArrayType::Scalar& coeffRef(Index i, Index j)
{
return m_array.const_cast_derived().coeffRef(i, j);
}
typename ArrayType::Scalar& coeffRef(Index index)
{
return m_array.const_cast_derived().coeffRef(index);
}
template<int LoadMode>
typename ArrayType::PacketReturnType packet(Index row, Index col) const
{
return m_array.template packet<LoadMode>(row, col);
}
template<int LoadMode>
typename ArrayType::PacketReturnType packet(Index index) const
{
// eigen_internal_assert(index >= 0 && index < size());
return m_array.template packet<LoadMode>(index);
}
template<int StoreMode>
void writePacket(Index row, Index col, const typename ArrayType::PacketScalar& x)
{
m_array.const_cast_derived().template writePacket<StoreMode>(row, col, x);
}
template<int StoreMode>
void writePacket(Index index, const typename ArrayType::PacketScalar& x)
{
// eigen_internal_assert(index >= 0 && index < size());
m_array.const_cast_derived().template writePacket<StoreMode>(index, x);
}
protected:
const ArrayType &m_array;
};
// -------------------- CwiseNullaryOp --------------------
template<typename NullaryOp, typename PlainObjectType>
struct evaluator_impl<CwiseNullaryOp<NullaryOp,PlainObjectType> >
{
typedef CwiseNullaryOp<NullaryOp,PlainObjectType> NullaryOpType;
evaluator_impl(const NullaryOpType& n) : m_nullaryOp(n) {}
typedef typename NullaryOpType::Index Index;
typename NullaryOpType::CoeffReturnType coeff(Index i, Index j) const
{
return m_nullaryOp.coeff(i, j);
}
typename NullaryOpType::CoeffReturnType coeff(Index index) const
{
return m_nullaryOp.coeff(index);
}
template<int LoadMode>
typename NullaryOpType::PacketScalar packet(Index index) const
{
return m_nullaryOp.template packet<LoadMode>(index);
}
protected:
const NullaryOpType& m_nullaryOp;
};
// -------------------- CwiseUnaryOp --------------------
template<typename UnaryOp, typename ArgType>
struct evaluator_impl<CwiseUnaryOp<UnaryOp, ArgType> >
{
typedef CwiseUnaryOp<UnaryOp, ArgType> UnaryOpType;
evaluator_impl(const UnaryOpType& op) : m_unaryOp(op), m_argImpl(op.nestedExpression()) {}
typedef typename UnaryOpType::Index Index;
typename UnaryOpType::CoeffReturnType coeff(Index i, Index j) const
{
return m_unaryOp.functor()(m_argImpl.coeff(i, j));
}
typename UnaryOpType::CoeffReturnType coeff(Index index) const
{
return m_unaryOp.functor()(m_argImpl.coeff(index));
}
template<int LoadMode>
typename UnaryOpType::PacketScalar packet(Index index) const
{
return m_unaryOp.functor().packetOp(m_argImpl.template packet<LoadMode>(index));
}
template<int LoadMode>
typename UnaryOpType::PacketScalar packet(Index row, Index col) const
{
return m_unaryOp.functor().packetOp(m_argImpl.template packet<LoadMode>(row, col));
}
protected:
const UnaryOpType& m_unaryOp;
typename evaluator<ArgType>::type m_argImpl;
};
// -------------------- CwiseBinaryOp --------------------
template<typename BinaryOp, typename Lhs, typename Rhs>
struct evaluator_impl<CwiseBinaryOp<BinaryOp, Lhs, Rhs> >
{
typedef CwiseBinaryOp<BinaryOp, Lhs, Rhs> BinaryOpType;
evaluator_impl(const BinaryOpType& xpr) : m_binaryOp(xpr), m_lhsImpl(xpr.lhs()), m_rhsImpl(xpr.rhs()) {}
typedef typename BinaryOpType::Index Index;
typename BinaryOpType::CoeffReturnType coeff(Index i, Index j) const
{
return m_binaryOp.functor()(m_lhsImpl.coeff(i, j), m_rhsImpl.coeff(i, j));
}
typename BinaryOpType::CoeffReturnType coeff(Index index) const
{
return m_binaryOp.functor()(m_lhsImpl.coeff(index), m_rhsImpl.coeff(index));
}
template<int LoadMode>
typename BinaryOpType::PacketScalar packet(Index index) const
{
return m_binaryOp.functor().packetOp(m_lhsImpl.template packet<LoadMode>(index),
m_rhsImpl.template packet<LoadMode>(index));
}
template<int LoadMode>
typename BinaryOpType::PacketScalar packet(Index row, Index col) const
{
return m_binaryOp.functor().packetOp(m_lhsImpl.template packet<LoadMode>(row, col),
m_rhsImpl.template packet<LoadMode>(row, col));
}
protected:
const BinaryOpType& m_binaryOp;
typename evaluator<Lhs>::type m_lhsImpl;
typename evaluator<Rhs>::type m_rhsImpl;
};
// -------------------- Product --------------------
template<typename Lhs, typename Rhs>
struct evaluator_impl<Product<Lhs,Rhs> > : public evaluator<typename Product<Lhs,Rhs>::PlainObject>::type
{
typedef Product<Lhs,Rhs> XprType;
typedef typename XprType::PlainObject PlainObject;
typedef typename evaluator<PlainObject>::type evaluator_base;
// enum {
// EvaluateLhs = ;
// EvaluateRhs = ;
// };
evaluator_impl(const XprType& product) : evaluator_base(m_result)
{
// here we process the left and right hand sides with a specialized evaluator
// perhaps this step should be done by the TreeOptimizer to get a canonical tree and reduce evaluator instanciations
// typename product_operand_evaluator<Lhs>::type m_lhsImpl(product.lhs());
// typename product_operand_evaluator<Rhs>::type m_rhsImpl(product.rhs());
// TODO do not rely on previous product mechanism !!
m_result.resize(product.rows(), product.cols());
m_result.noalias() = product.lhs() * product.rhs();
}
protected:
PlainObject m_result;
};
// -------------------- Block --------------------
//
// This evaluator is implemented as a dumb wrapper around Block expression class.
// TODO: Make this a real evaluator
template<typename XprType, int BlockRows, int BlockCols, bool InnerPanel, bool HasDirectAccess>
struct evaluator_impl<Block<XprType, BlockRows, BlockCols, InnerPanel, HasDirectAccess> >
{
typedef Block<XprType, BlockRows, BlockCols, InnerPanel, HasDirectAccess> BlockType;
evaluator_impl(const BlockType& block) : m_block(block) { }
typedef typename BlockType::Index Index;
typedef typename BlockType::Scalar Scalar;
typedef typename BlockType::CoeffReturnType CoeffReturnType;
typedef typename BlockType::PacketScalar PacketScalar;
typedef typename BlockType::PacketReturnType PacketReturnType;
CoeffReturnType coeff(Index i, Index j) const
{
return m_block.coeff(i,j);
}
CoeffReturnType coeff(Index index) const
{
return m_block.coeff(index);
}
Scalar& coeffRef(Index i, Index j)
{
return m_block.const_cast_derived().coeffRef(i,j);
}
Scalar& coeffRef(Index index)
{
return m_block.const_cast_derived().coeffRef(index);
}
template<int LoadMode>
PacketReturnType packet(Index row, Index col) const
{
return m_block.template packet<LoadMode>(row, col);
}
template<int LoadMode>
PacketReturnType packet(Index index) const
{
return m_block.template packet<LoadMode>(index);
}
template<int StoreMode>
void writePacket(Index row, Index col, const PacketScalar& x)
{
m_block.const_cast_derived().template writePacket<StoreMode>(row, col, x);
}
template<int StoreMode>
void writePacket(Index index, const PacketScalar& x)
{
m_block.const_cast_derived().template writePacket<StoreMode>(index, x);
}
protected:
const BlockType& m_block;
};
} // namespace internal
#endif // EIGEN_COREEVALUATORS_H