412 lines
12 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Chen-Pang He <jdh8@ms63.hinet.net>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_MATRIX_POWER
#define EIGEN_MATRIX_POWER
namespace Eigen {
template<typename MatrixType>
class MatrixPowerEvaluator;
/**
* \ingroup MatrixFunctions_Module
*
* \brief Class for computing matrix powers.
*
* \tparam MatrixType type of the base, expected to be an instantiation
* of the Matrix class template.
*
* This class is capable of computing real/complex matrices raised to
* an arbitrary real power. Meanwhile, it saves the result of Schur
* decomposition if an non-integral power has even been calculated.
* Therefore, if you want to compute multiple (>= 2) matrix powers
* for the same matrix, using the class directly is more efficient than
* calling MatrixBase::pow().
*
* Example:
* \include MatrixPower_optimal.cpp
* Output: \verbinclude MatrixPower_optimal.out
*/
template<typename MatrixType> class MatrixPower
{
private:
static const int Rows = MatrixType::RowsAtCompileTime;
static const int Cols = MatrixType::ColsAtCompileTime;
static const int Options = MatrixType::Options;
static const int MaxRows = MatrixType::MaxRowsAtCompileTime;
static const int MaxCols = MatrixType::MaxColsAtCompileTime;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef typename MatrixType::Index Index;
typedef Matrix<std::complex<RealScalar>,Rows,Cols,Options,MaxRows,MaxCols> ComplexMatrix;
const MatrixType& m_A;
MatrixType m_tmp1, m_tmp2;
ComplexMatrix m_T, m_U, m_fT;
bool m_init;
RealScalar modfAndInit(RealScalar, RealScalar*);
template<typename PlainObject, typename ResultType>
void apply(const PlainObject&, ResultType&, bool&);
template<typename ResultType>
void computeIntPower(ResultType&, RealScalar);
template<typename PlainObject, typename ResultType>
void computeIntPower(const PlainObject&, ResultType&, RealScalar);
template<typename ResultType>
void computeFracPower(ResultType&, RealScalar);
public:
/**
* \brief Constructor.
*
* \param[in] A the base of the matrix power.
*/
explicit MatrixPower(const MatrixType& A);
/**
* \brief Return the expression \f$ A^p \f$.
*
* \param[in] p exponent, a real scalar.
*/
const MatrixPowerEvaluator<MatrixType> operator()(RealScalar p)
{ return MatrixPowerEvaluator<MatrixType>(*this, p); }
/**
* \brief Compute the matrix power.
*
* \param[in] p exponent, a real scalar.
* \param[out] res \f$ A^p \f$ where A is specified in the
* constructor.
*/
void compute(MatrixType& res, RealScalar p);
/**
* \brief Compute the matrix power multiplied by another matrix.
*
* \param[in] b a matrix with the same rows as A.
* \param[in] p exponent, a real scalar.
* \param[in] noalias
* \param[out] res \f$ A^p b \f$, where A is specified in the
* constructor.
*/
template<typename PlainObject, typename ResultType>
void compute(const PlainObject& b, ResultType& res, RealScalar p);
Index rows() const { return m_A.rows(); }
Index cols() const { return m_A.cols(); }
};
template<typename MatrixType>
MatrixPower<MatrixType>::MatrixPower(const MatrixType& A) :
m_A(A),
m_init(false)
{ /* empty body */ }
template<typename MatrixType>
void MatrixPower<MatrixType>::compute(MatrixType& res, RealScalar p)
{
switch (m_A.cols()) {
case 0:
break;
case 1:
res(0,0) = std::pow(m_A(0,0), p);
break;
default:
RealScalar intpart;
RealScalar x = modfAndInit(p, &intpart);
res = MatrixType::Identity(m_A.rows(),m_A.cols());
computeIntPower(res, intpart);
computeFracPower(res, x);
}
}
template<typename MatrixType>
template<typename PlainObject, typename ResultType>
void MatrixPower<MatrixType>::compute(const PlainObject& b, ResultType& res, RealScalar p)
{
switch (m_A.cols()) {
case 0:
break;
case 1:
res = std::pow(m_A(0,0), p) * b;
break;
default:
RealScalar intpart;
RealScalar x = modfAndInit(p, &intpart);
computeIntPower(b, res, intpart);
computeFracPower(res, x);
}
}
template<typename MatrixType>
typename MatrixType::RealScalar MatrixPower<MatrixType>::modfAndInit(RealScalar x, RealScalar* intpart)
{
static RealScalar maxAbsEival, minAbsEival;
*intpart = std::floor(x);
RealScalar res = x - *intpart;
if (!m_init && res) {
const ComplexSchur<MatrixType> schurOfA(m_A);
m_T = schurOfA.matrixT();
m_U = schurOfA.matrixU();
m_init = true;
const Array<RealScalar,EIGEN_SIZE_MIN_PREFER_FIXED(Rows,Cols),1,ColMajor,EIGEN_SIZE_MIN_PREFER_FIXED(MaxRows,MaxCols)>
absTdiag = m_T.diagonal().array().abs();
maxAbsEival = absTdiag.maxCoeff();
minAbsEival = absTdiag.minCoeff();
}
if (res > RealScalar(0.5) && res > (1-res) * std::pow(maxAbsEival/minAbsEival, res)) {
--res;
++*intpart;
}
return res;
}
template<typename MatrixType>
template<typename PlainObject, typename ResultType>
void MatrixPower<MatrixType>::apply(const PlainObject& b, ResultType& res, bool& init)
{
if (init)
res = m_tmp1 * res;
else {
init = true;
res.noalias() = m_tmp1 * b;
}
}
template<typename MatrixType>
template<typename ResultType>
void MatrixPower<MatrixType>::computeIntPower(ResultType& res, RealScalar p)
{
RealScalar pp = std::abs(p);
if (p<0) m_tmp1 = m_A.inverse();
else m_tmp1 = m_A;
while (pp >= 1) {
if (std::fmod(pp, 2) >= 1)
res = m_tmp1 * res;
m_tmp1 *= m_tmp1;
pp /= 2;
}
}
template<typename MatrixType>
template<typename PlainObject, typename ResultType>
void MatrixPower<MatrixType>::computeIntPower(const PlainObject& b, ResultType& res, RealScalar p)
{
if (b.cols() >= m_A.cols()) {
m_tmp2 = MatrixType::Identity(m_A.rows(),m_A.cols());
computeIntPower(m_tmp2, p);
res.noalias() = m_tmp2 * b;
}
else {
RealScalar pp = std::abs(p);
int squarings, applyings = internal::binary_powering_cost(pp, &squarings);
bool init = false;
if (p==0) {
res = b;
return;
}
else if (p>0) {
m_tmp1 = m_A;
}
else if (b.cols() * (pp - applyings) <= m_A.cols() * squarings) {
PartialPivLU<MatrixType> A(m_A);
res = A.solve(b);
for (--pp; pp >= 1; --pp)
res = A.solve(res);
return;
}
else {
m_tmp1 = m_A.inverse();
}
while (b.cols() * (pp - applyings) > m_A.cols() * squarings) {
if (std::fmod(pp, 2) >= 1) {
apply(b, res, init);
--applyings;
}
m_tmp1 *= m_tmp1;
--squarings;
pp /= 2;
}
for (; pp >= 1; --pp)
apply(b, res, init);
}
}
template<typename MatrixType>
template<typename ResultType>
void MatrixPower<MatrixType>::computeFracPower(ResultType& res, RealScalar p)
{
if (p) {
MatrixPowerTriangularAtomic<ComplexMatrix>(m_T).compute(m_fT, p);
internal::recompose_complex_schur<NumTraits<Scalar>::IsComplex>::run(m_tmp1, m_fT, m_U);
res = m_tmp1 * res;
}
}
template<typename MatrixType, typename PlainObject>
class MatrixPowerMatrixProduct : public MatrixPowerProductBase<MatrixPowerMatrixProduct<MatrixType,PlainObject> >
{
public:
typedef MatrixPowerProductBase<MatrixPowerMatrixProduct<MatrixType,PlainObject> > Base;
EIGEN_DENSE_PUBLIC_INTERFACE(MatrixPowerMatrixProduct)
MatrixPowerMatrixProduct(MatrixPower<MatrixType>& pow, const PlainObject& b, RealScalar p)
: m_pow(pow), m_b(b), m_p(p) { }
template<typename ResultType>
inline void evalTo(ResultType& res) const
{ m_pow.compute(m_b, res, m_p); }
Index rows() const { return m_b.rows(); }
Index cols() const { return m_b.cols(); }
private:
MatrixPower<MatrixType>& m_pow;
const PlainObject& m_b;
const RealScalar m_p;
MatrixPowerMatrixProduct& operator=(const MatrixPowerMatrixProduct&);
};
/**
* \ingroup MatrixFunctions_Module
*
* \brief Proxy for the matrix power of some matrix (expression).
*
* \tparam Derived type of the base, a matrix (expression).
*
* This class holds the arguments to the matrix power until it is
* assigned or evaluated for some other reason (so the argument
* should not be changed in the meantime). It is the return type of
* MatrixBase::pow() and related functions and most of the
* time this is the only way it is used.
*/
template<typename Derived>
class MatrixPowerReturnValue : public ReturnByValue<MatrixPowerReturnValue<Derived> >
{
public:
typedef typename Derived::RealScalar RealScalar;
typedef typename Derived::Index Index;
/**
* \brief Constructor.
*
* \param[in] A %Matrix (expression), the base of the matrix power.
* \param[in] p scalar, the exponent of the matrix power.
*/
MatrixPowerReturnValue(const Derived& A, RealScalar p)
: m_A(A), m_p(p) { }
/**
* \brief Compute the matrix power.
*
* \param[out] result \f$ A^p \f$ where \p A and \p p are as in the
* constructor.
*/
template<typename ResultType>
inline void evalTo(ResultType& res) const
{ MatrixPower<typename Derived::PlainObject>(m_A).compute(res, m_p); }
Index rows() const { return m_A.rows(); }
Index cols() const { return m_A.cols(); }
private:
const Derived& m_A;
const RealScalar m_p;
MatrixPowerReturnValue& operator=(const MatrixPowerReturnValue&);
};
template<typename MatrixType>
class MatrixPowerEvaluator
: public ReturnByValue<MatrixPowerEvaluator<MatrixType> >
{
public:
typedef typename MatrixType::RealScalar RealScalar;
typedef typename MatrixType::Index Index;
MatrixPowerEvaluator(MatrixPower<MatrixType>& ref, RealScalar p)
: m_pow(ref), m_p(p) { }
template<typename ResultType>
inline void evalTo(ResultType& res) const
{ m_pow.compute(res, m_p); }
template<typename Derived>
const MatrixPowerMatrixProduct<MatrixType, typename Derived::PlainObject> operator*(const MatrixBase<Derived>& b) const
{ return MatrixPowerMatrixProduct<MatrixType, typename Derived::PlainObject>(m_pow, b.derived(), m_p); }
Index rows() const { return m_pow.rows(); }
Index cols() const { return m_pow.cols(); }
private:
MatrixPower<MatrixType>& m_pow;
const RealScalar m_p;
MatrixPowerEvaluator& operator=(const MatrixPowerEvaluator&);
};
namespace internal {
template<typename MatrixType, typename PlainObject>
struct nested<MatrixPowerMatrixProduct<MatrixType,PlainObject> >
{ typedef PlainObject const& type; };
template<typename Derived>
struct traits<MatrixPowerReturnValue<Derived> >
{ typedef typename Derived::PlainObject ReturnType; };
template<typename MatrixType>
struct traits<MatrixPowerEvaluator<MatrixType> >
{ typedef MatrixType ReturnType; };
template<typename MatrixType, typename PlainObject>
struct traits<MatrixPowerMatrixProduct<MatrixType,PlainObject> >
{
typedef MatrixXpr XprKind;
typedef typename scalar_product_traits<typename MatrixType::Scalar, typename PlainObject::Scalar>::ReturnType Scalar;
typedef typename promote_storage_type<typename traits<MatrixType>::StorageKind,
typename traits<PlainObject>::StorageKind>::ret StorageKind;
typedef typename promote_index_type<typename traits<MatrixType>::Index,
typename traits<PlainObject>::Index>::type Index;
enum {
RowsAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(traits<MatrixType>::RowsAtCompileTime,
traits<PlainObject>::RowsAtCompileTime),
ColsAtCompileTime = traits<PlainObject>::ColsAtCompileTime,
MaxRowsAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(traits<MatrixType>::MaxRowsAtCompileTime,
traits<PlainObject>::MaxRowsAtCompileTime),
MaxColsAtCompileTime = traits<PlainObject>::MaxColsAtCompileTime,
Flags = (MaxRowsAtCompileTime==1 ? RowMajorBit : 0)
| EvalBeforeNestingBit | EvalBeforeAssigningBit | NestByRefBit,
CoeffReadCost = 0
};
};
}
template<typename Derived>
const MatrixPowerReturnValue<Derived> MatrixBase<Derived>::pow(RealScalar p) const
{
eigen_assert(rows() == cols());
return MatrixPowerReturnValue<Derived>(derived(), p);
}
} // namespace Eigen
#endif // EIGEN_MATRIX_POWER