mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-05-04 17:54:07 +08:00
193 lines
7.3 KiB
C++
193 lines
7.3 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra. Eigen itself is part of the KDE project.
|
|
//
|
|
// Copyright (C) 2006-2007 Benoit Jacob <jacob@math.jussieu.fr>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or modify it under the
|
|
// terms of the GNU General Public License as published by the Free Software
|
|
// Foundation; either version 2 or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
|
|
// details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License along
|
|
// with Eigen; if not, write to the Free Software Foundation, Inc., 51
|
|
// Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
//
|
|
// As a special exception, if other files instantiate templates or use macros
|
|
// or functions from this file, or you compile this file and link it
|
|
// with other works to produce a work based on this file, this file does not
|
|
// by itself cause the resulting work to be covered by the GNU General Public
|
|
// License. This exception does not invalidate any other reasons why a work
|
|
// based on this file might be covered by the GNU General Public License.
|
|
|
|
#ifndef EIGEN_MATHFUNCTIONS_H
|
|
#define EIGEN_MATHFUNCTIONS_H
|
|
|
|
template<typename T> inline typename NumTraits<T>::Real precision();
|
|
template<typename T> inline T random(T a, T b);
|
|
template<typename T> inline T random();
|
|
|
|
template<> inline int precision<int>() { return 0; }
|
|
inline int real(int x) { return x; }
|
|
inline int imag(int) { return 0; }
|
|
inline int conj(int x) { return x; }
|
|
inline int abs(int x) { return std::abs(x); }
|
|
inline int abs2(int x) { return x*x; }
|
|
inline int sqrt(int)
|
|
{
|
|
// Taking the square root of integers is not allowed
|
|
// (the square root does not always exist within the integers).
|
|
// Please cast to a floating-point type.
|
|
assert(false);
|
|
return 0;
|
|
}
|
|
template<> inline int random(int a, int b)
|
|
{
|
|
// We can't just do rand()%n as only the high-order bits are really random
|
|
return a + static_cast<int>((b-a+1) * (rand() / (RAND_MAX + 1.0)));
|
|
}
|
|
template<> inline int random()
|
|
{
|
|
return random<int>(-10, 10);
|
|
}
|
|
inline bool isMuchSmallerThan(int a, int, int = precision<int>())
|
|
{
|
|
return a == 0;
|
|
}
|
|
inline bool isApprox(int a, int b, int = precision<int>())
|
|
{
|
|
return a == b;
|
|
}
|
|
inline bool isApproxOrLessThan(int a, int b, int = precision<int>())
|
|
{
|
|
return a <= b;
|
|
}
|
|
|
|
template<> inline float precision<float>() { return 1e-5f; }
|
|
inline float real(float x) { return x; }
|
|
inline float imag(float) { return 0.f; }
|
|
inline float conj(float x) { return x; }
|
|
inline float abs(float x) { return std::abs(x); }
|
|
inline float abs2(float x) { return x*x; }
|
|
inline float sqrt(float x) { return std::sqrt(x); }
|
|
template<> inline float random(float a, float b)
|
|
{
|
|
return a + (b-a) * std::rand() / RAND_MAX;
|
|
}
|
|
template<> inline float random()
|
|
{
|
|
return random<float>(-10.0f, 10.0f);
|
|
}
|
|
inline bool isMuchSmallerThan(float a, float b, float prec = precision<float>())
|
|
{
|
|
return std::abs(a) <= std::abs(b) * prec;
|
|
}
|
|
inline bool isApprox(float a, float b, float prec = precision<float>())
|
|
{
|
|
return std::abs(a - b) <= std::min(std::abs(a), std::abs(b)) * prec;
|
|
}
|
|
inline bool isApproxOrLessThan(float a, float b, float prec = precision<float>())
|
|
{
|
|
return a <= b || isApprox(a, b, prec);
|
|
}
|
|
|
|
template<> inline double precision<double>() { return 1e-11; }
|
|
inline double real(double x) { return x; }
|
|
inline double imag(double) { return 0.; }
|
|
inline double conj(double x) { return x; }
|
|
inline double abs(double x) { return std::abs(x); }
|
|
inline double abs2(double x) { return x*x; }
|
|
inline double sqrt(double x) { return std::sqrt(x); }
|
|
template<> inline double random(double a, double b)
|
|
{
|
|
return a + (b-a) * std::rand() / RAND_MAX;
|
|
}
|
|
template<> inline double random()
|
|
{
|
|
return random<double>(-10.0, 10.0);
|
|
}
|
|
inline bool isMuchSmallerThan(double a, double b, double prec = precision<double>())
|
|
{
|
|
return std::abs(a) <= std::abs(b) * prec;
|
|
}
|
|
inline bool isApprox(double a, double b, double prec = precision<double>())
|
|
{
|
|
return std::abs(a - b) <= std::min(std::abs(a), std::abs(b)) * prec;
|
|
}
|
|
inline bool isApproxOrLessThan(double a, double b, double prec = precision<double>())
|
|
{
|
|
return a <= b || isApprox(a, b, prec);
|
|
}
|
|
|
|
template<> inline float precision<std::complex<float> >() { return precision<float>(); }
|
|
inline float real(const std::complex<float>& x) { return std::real(x); }
|
|
inline float imag(const std::complex<float>& x) { return std::imag(x); }
|
|
inline std::complex<float> conj(const std::complex<float>& x) { return std::conj(x); }
|
|
inline float abs(const std::complex<float>& x) { return std::abs(x); }
|
|
inline float abs2(const std::complex<float>& x) { return std::norm(x); }
|
|
inline std::complex<float> sqrt(const std::complex<float>&)
|
|
{
|
|
// Taking the square roots of complex numbers is not allowed,
|
|
// as this is ambiguous (there are two square roots).
|
|
// What were you trying to do?
|
|
assert(false);
|
|
return 0;
|
|
}
|
|
template<> inline std::complex<float> random()
|
|
{
|
|
return std::complex<float>(random<float>(), random<float>());
|
|
}
|
|
inline bool isMuchSmallerThan(const std::complex<float>& a, const std::complex<float>& b, float prec = precision<float>())
|
|
{
|
|
return abs2(a) <= abs2(b) * prec * prec;
|
|
}
|
|
inline bool isApprox(const std::complex<float>& a, const std::complex<float>& b, float prec = precision<float>())
|
|
{
|
|
return isApprox(std::real(a), std::real(b), prec)
|
|
&& isApprox(std::imag(a), std::imag(b), prec);
|
|
}
|
|
// isApproxOrLessThan wouldn't make sense for complex numbers
|
|
|
|
template<> inline double precision<std::complex<double> >() { return precision<double>(); }
|
|
inline double real(const std::complex<double>& x) { return std::real(x); }
|
|
inline double imag(const std::complex<double>& x) { return std::imag(x); }
|
|
inline std::complex<double> conj(const std::complex<double>& x) { return std::conj(x); }
|
|
inline double abs(const std::complex<double>& x) { return std::abs(x); }
|
|
inline double abs2(const std::complex<double>& x) { return std::norm(x); }
|
|
template<> inline std::complex<double> random()
|
|
{
|
|
return std::complex<double>(random<double>(), random<double>());
|
|
}
|
|
inline bool isMuchSmallerThan(const std::complex<double>& a, const std::complex<double>& b, double prec = precision<double>())
|
|
{
|
|
return abs2(a) <= abs2(b) * prec * prec;
|
|
}
|
|
inline bool isApprox(const std::complex<double>& a, const std::complex<double>& b, double prec = precision<double>())
|
|
{
|
|
return isApprox(std::real(a), std::real(b), prec)
|
|
&& isApprox(std::imag(a), std::imag(b), prec);
|
|
}
|
|
// isApproxOrLessThan wouldn't make sense for complex numbers
|
|
|
|
#define EIGEN_MAKE_MORE_OVERLOADED_COMPLEX_OPERATOR_STAR(T,U) \
|
|
inline std::complex<T> operator*(U a, const std::complex<T>& b) \
|
|
{ \
|
|
return std::complex<T>(static_cast<T>(a)*b.real(), \
|
|
static_cast<T>(a)*b.imag()); \
|
|
} \
|
|
inline std::complex<T> operator*(const std::complex<T>& b, U a) \
|
|
{ \
|
|
return std::complex<T>(static_cast<T>(a)*b.real(), \
|
|
static_cast<T>(a)*b.imag()); \
|
|
}
|
|
|
|
EIGEN_MAKE_MORE_OVERLOADED_COMPLEX_OPERATOR_STAR(int, float)
|
|
EIGEN_MAKE_MORE_OVERLOADED_COMPLEX_OPERATOR_STAR(int, double)
|
|
EIGEN_MAKE_MORE_OVERLOADED_COMPLEX_OPERATOR_STAR(float, double)
|
|
EIGEN_MAKE_MORE_OVERLOADED_COMPLEX_OPERATOR_STAR(double, float)
|
|
|
|
#endif // EIGEN_MATHFUNCTIONS_H
|