mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-04-23 10:09:36 +08:00
2360 lines
67 KiB
C++
2360 lines
67 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2015 Eugene Brevdo <ebrevdo@gmail.com>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#ifndef EIGEN_SPECIAL_FUNCTIONS_H
|
|
#define EIGEN_SPECIAL_FUNCTIONS_H
|
|
|
|
namespace Eigen {
|
|
namespace internal {
|
|
|
|
// Parts of this code are based on the Cephes Math Library.
|
|
//
|
|
// Cephes Math Library Release 2.8: June, 2000
|
|
// Copyright 1984, 1987, 1992, 2000 by Stephen L. Moshier
|
|
//
|
|
// Permission has been kindly provided by the original author
|
|
// to incorporate the Cephes software into the Eigen codebase:
|
|
//
|
|
// From: Stephen Moshier
|
|
// To: Eugene Brevdo
|
|
// Subject: Re: Permission to wrap several cephes functions in Eigen
|
|
//
|
|
// Hello Eugene,
|
|
//
|
|
// Thank you for writing.
|
|
//
|
|
// If your licensing is similar to BSD, the formal way that has been
|
|
// handled is simply to add a statement to the effect that you are incorporating
|
|
// the Cephes software by permission of the author.
|
|
//
|
|
// Good luck with your project,
|
|
// Steve
|
|
|
|
namespace cephes {
|
|
|
|
/* chbevl (modified for Eigen)
|
|
*
|
|
* Evaluate Chebyshev series
|
|
*
|
|
*
|
|
*
|
|
* SYNOPSIS:
|
|
*
|
|
* int N;
|
|
* Scalar x, y, coef[N], chebevl();
|
|
*
|
|
* y = chbevl( x, coef, N );
|
|
*
|
|
*
|
|
*
|
|
* DESCRIPTION:
|
|
*
|
|
* Evaluates the series
|
|
*
|
|
* N-1
|
|
* - '
|
|
* y = > coef[i] T (x/2)
|
|
* - i
|
|
* i=0
|
|
*
|
|
* of Chebyshev polynomials Ti at argument x/2.
|
|
*
|
|
* Coefficients are stored in reverse order, i.e. the zero
|
|
* order term is last in the array. Note N is the number of
|
|
* coefficients, not the order.
|
|
*
|
|
* If coefficients are for the interval a to b, x must
|
|
* have been transformed to x -> 2(2x - b - a)/(b-a) before
|
|
* entering the routine. This maps x from (a, b) to (-1, 1),
|
|
* over which the Chebyshev polynomials are defined.
|
|
*
|
|
* If the coefficients are for the inverted interval, in
|
|
* which (a, b) is mapped to (1/b, 1/a), the transformation
|
|
* required is x -> 2(2ab/x - b - a)/(b-a). If b is infinity,
|
|
* this becomes x -> 4a/x - 1.
|
|
*
|
|
*
|
|
*
|
|
* SPEED:
|
|
*
|
|
* Taking advantage of the recurrence properties of the
|
|
* Chebyshev polynomials, the routine requires one more
|
|
* addition per loop than evaluating a nested polynomial of
|
|
* the same degree.
|
|
*
|
|
*/
|
|
template <typename Scalar, int N>
|
|
struct chebevl {
|
|
EIGEN_DEVICE_FUNC
|
|
static EIGEN_STRONG_INLINE Scalar run(Scalar x, const Scalar coef[]) {
|
|
Scalar b0 = coef[0];
|
|
Scalar b1 = 0;
|
|
Scalar b2;
|
|
|
|
for (int i = 1; i < N; i++) {
|
|
b2 = b1;
|
|
b1 = b0;
|
|
b0 = x * b1 - b2 + coef[i];
|
|
}
|
|
|
|
return Scalar(0.5) * (b0 - b2);
|
|
}
|
|
};
|
|
|
|
} // end namespace cephes
|
|
|
|
/****************************************************************************
|
|
* Implementation of lgamma, requires C++11/C99 *
|
|
****************************************************************************/
|
|
|
|
template <typename Scalar>
|
|
struct lgamma_impl {
|
|
EIGEN_DEVICE_FUNC
|
|
static EIGEN_STRONG_INLINE Scalar run(const Scalar) {
|
|
EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
|
|
THIS_TYPE_IS_NOT_SUPPORTED);
|
|
return Scalar(0);
|
|
}
|
|
};
|
|
|
|
template <typename Scalar>
|
|
struct lgamma_retval {
|
|
typedef Scalar type;
|
|
};
|
|
|
|
#if EIGEN_HAS_C99_MATH
|
|
template <>
|
|
struct lgamma_impl<float> {
|
|
EIGEN_DEVICE_FUNC
|
|
static EIGEN_STRONG_INLINE float run(float x) {
|
|
#if !defined(EIGEN_GPU_COMPILE_PHASE) && (defined(_BSD_SOURCE) || defined(_SVID_SOURCE)) && !defined(__APPLE__)
|
|
int dummy;
|
|
return ::lgammaf_r(x, &dummy);
|
|
#elif defined(SYCL_DEVICE_ONLY)
|
|
return cl::sycl::lgamma(x);
|
|
#else
|
|
return ::lgammaf(x);
|
|
#endif
|
|
}
|
|
};
|
|
|
|
template <>
|
|
struct lgamma_impl<double> {
|
|
EIGEN_DEVICE_FUNC
|
|
static EIGEN_STRONG_INLINE double run(double x) {
|
|
#if !defined(EIGEN_GPU_COMPILE_PHASE) && (defined(_BSD_SOURCE) || defined(_SVID_SOURCE)) && !defined(__APPLE__)
|
|
int dummy;
|
|
return ::lgamma_r(x, &dummy);
|
|
#elif defined(SYCL_DEVICE_ONLY)
|
|
return cl::sycl::lgamma(x);
|
|
#else
|
|
return ::lgamma(x);
|
|
#endif
|
|
}
|
|
};
|
|
#endif
|
|
|
|
/****************************************************************************
|
|
* Implementation of digamma (psi), based on Cephes *
|
|
****************************************************************************/
|
|
|
|
template <typename Scalar>
|
|
struct digamma_retval {
|
|
typedef Scalar type;
|
|
};
|
|
|
|
/*
|
|
*
|
|
* Polynomial evaluation helper for the Psi (digamma) function.
|
|
*
|
|
* digamma_impl_maybe_poly::run(s) evaluates the asymptotic Psi expansion for
|
|
* input Scalar s, assuming s is above 10.0.
|
|
*
|
|
* If s is above a certain threshold for the given Scalar type, zero
|
|
* is returned. Otherwise the polynomial is evaluated with enough
|
|
* coefficients for results matching Scalar machine precision.
|
|
*
|
|
*
|
|
*/
|
|
template <typename Scalar>
|
|
struct digamma_impl_maybe_poly {
|
|
EIGEN_DEVICE_FUNC
|
|
static EIGEN_STRONG_INLINE Scalar run(const Scalar) {
|
|
EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
|
|
THIS_TYPE_IS_NOT_SUPPORTED);
|
|
return Scalar(0);
|
|
}
|
|
};
|
|
|
|
|
|
template <>
|
|
struct digamma_impl_maybe_poly<float> {
|
|
EIGEN_DEVICE_FUNC
|
|
static EIGEN_STRONG_INLINE float run(const float s) {
|
|
const float A[] = {
|
|
-4.16666666666666666667E-3f,
|
|
3.96825396825396825397E-3f,
|
|
-8.33333333333333333333E-3f,
|
|
8.33333333333333333333E-2f
|
|
};
|
|
|
|
float z;
|
|
if (s < 1.0e8f) {
|
|
z = 1.0f / (s * s);
|
|
return z * internal::ppolevl<float, 3>::run(z, A);
|
|
} else return 0.0f;
|
|
}
|
|
};
|
|
|
|
template <>
|
|
struct digamma_impl_maybe_poly<double> {
|
|
EIGEN_DEVICE_FUNC
|
|
static EIGEN_STRONG_INLINE double run(const double s) {
|
|
const double A[] = {
|
|
8.33333333333333333333E-2,
|
|
-2.10927960927960927961E-2,
|
|
7.57575757575757575758E-3,
|
|
-4.16666666666666666667E-3,
|
|
3.96825396825396825397E-3,
|
|
-8.33333333333333333333E-3,
|
|
8.33333333333333333333E-2
|
|
};
|
|
|
|
double z;
|
|
if (s < 1.0e17) {
|
|
z = 1.0 / (s * s);
|
|
return z * internal::ppolevl<double, 6>::run(z, A);
|
|
}
|
|
else return 0.0;
|
|
}
|
|
};
|
|
|
|
template <typename Scalar>
|
|
struct digamma_impl {
|
|
EIGEN_DEVICE_FUNC
|
|
static Scalar run(Scalar x) {
|
|
/*
|
|
*
|
|
* Psi (digamma) function (modified for Eigen)
|
|
*
|
|
*
|
|
* SYNOPSIS:
|
|
*
|
|
* double x, y, psi();
|
|
*
|
|
* y = psi( x );
|
|
*
|
|
*
|
|
* DESCRIPTION:
|
|
*
|
|
* d -
|
|
* psi(x) = -- ln | (x)
|
|
* dx
|
|
*
|
|
* is the logarithmic derivative of the gamma function.
|
|
* For integer x,
|
|
* n-1
|
|
* -
|
|
* psi(n) = -EUL + > 1/k.
|
|
* -
|
|
* k=1
|
|
*
|
|
* If x is negative, it is transformed to a positive argument by the
|
|
* reflection formula psi(1-x) = psi(x) + pi cot(pi x).
|
|
* For general positive x, the argument is made greater than 10
|
|
* using the recurrence psi(x+1) = psi(x) + 1/x.
|
|
* Then the following asymptotic expansion is applied:
|
|
*
|
|
* inf. B
|
|
* - 2k
|
|
* psi(x) = log(x) - 1/2x - > -------
|
|
* - 2k
|
|
* k=1 2k x
|
|
*
|
|
* where the B2k are Bernoulli numbers.
|
|
*
|
|
* ACCURACY (float):
|
|
* Relative error (except absolute when |psi| < 1):
|
|
* arithmetic domain # trials peak rms
|
|
* IEEE 0,30 30000 1.3e-15 1.4e-16
|
|
* IEEE -30,0 40000 1.5e-15 2.2e-16
|
|
*
|
|
* ACCURACY (double):
|
|
* Absolute error, relative when |psi| > 1 :
|
|
* arithmetic domain # trials peak rms
|
|
* IEEE -33,0 30000 8.2e-7 1.2e-7
|
|
* IEEE 0,33 100000 7.3e-7 7.7e-8
|
|
*
|
|
* ERROR MESSAGES:
|
|
* message condition value returned
|
|
* psi singularity x integer <=0 INFINITY
|
|
*/
|
|
|
|
Scalar p, q, nz, s, w, y;
|
|
bool negative = false;
|
|
|
|
const Scalar maxnum = NumTraits<Scalar>::infinity();
|
|
const Scalar m_pi = Scalar(EIGEN_PI);
|
|
|
|
const Scalar zero = Scalar(0);
|
|
const Scalar one = Scalar(1);
|
|
const Scalar half = Scalar(0.5);
|
|
nz = zero;
|
|
|
|
if (x <= zero) {
|
|
negative = true;
|
|
q = x;
|
|
p = numext::floor(q);
|
|
if (p == q) {
|
|
return maxnum;
|
|
}
|
|
/* Remove the zeros of tan(m_pi x)
|
|
* by subtracting the nearest integer from x
|
|
*/
|
|
nz = q - p;
|
|
if (nz != half) {
|
|
if (nz > half) {
|
|
p += one;
|
|
nz = q - p;
|
|
}
|
|
nz = m_pi / numext::tan(m_pi * nz);
|
|
}
|
|
else {
|
|
nz = zero;
|
|
}
|
|
x = one - x;
|
|
}
|
|
|
|
/* use the recurrence psi(x+1) = psi(x) + 1/x. */
|
|
s = x;
|
|
w = zero;
|
|
while (s < Scalar(10)) {
|
|
w += one / s;
|
|
s += one;
|
|
}
|
|
|
|
y = digamma_impl_maybe_poly<Scalar>::run(s);
|
|
|
|
y = numext::log(s) - (half / s) - y - w;
|
|
|
|
return (negative) ? y - nz : y;
|
|
}
|
|
};
|
|
|
|
/****************************************************************************
|
|
* Implementation of erf, requires C++11/C99 *
|
|
****************************************************************************/
|
|
|
|
template <typename Scalar>
|
|
struct erf_impl {
|
|
EIGEN_DEVICE_FUNC
|
|
static EIGEN_STRONG_INLINE Scalar run(const Scalar) {
|
|
EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
|
|
THIS_TYPE_IS_NOT_SUPPORTED);
|
|
return Scalar(0);
|
|
}
|
|
};
|
|
|
|
template <typename Scalar>
|
|
struct erf_retval {
|
|
typedef Scalar type;
|
|
};
|
|
|
|
#if EIGEN_HAS_C99_MATH
|
|
template <>
|
|
struct erf_impl<float> {
|
|
EIGEN_DEVICE_FUNC
|
|
static EIGEN_STRONG_INLINE float run(float x) {
|
|
#if defined(SYCL_DEVICE_ONLY)
|
|
return cl::sycl::erf(x);
|
|
#else
|
|
return ::erff(x);
|
|
#endif
|
|
}
|
|
};
|
|
|
|
template <>
|
|
struct erf_impl<double> {
|
|
EIGEN_DEVICE_FUNC
|
|
static EIGEN_STRONG_INLINE double run(double x) {
|
|
#if defined(SYCL_DEVICE_ONLY)
|
|
return cl::sycl::erf(x);
|
|
#else
|
|
return ::erf(x);
|
|
#endif
|
|
}
|
|
};
|
|
#endif // EIGEN_HAS_C99_MATH
|
|
|
|
/***************************************************************************
|
|
* Implementation of erfc, requires C++11/C99 *
|
|
****************************************************************************/
|
|
|
|
template <typename Scalar>
|
|
struct erfc_impl {
|
|
EIGEN_DEVICE_FUNC
|
|
static EIGEN_STRONG_INLINE Scalar run(const Scalar) {
|
|
EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
|
|
THIS_TYPE_IS_NOT_SUPPORTED);
|
|
return Scalar(0);
|
|
}
|
|
};
|
|
|
|
template <typename Scalar>
|
|
struct erfc_retval {
|
|
typedef Scalar type;
|
|
};
|
|
|
|
#if EIGEN_HAS_C99_MATH
|
|
template <>
|
|
struct erfc_impl<float> {
|
|
EIGEN_DEVICE_FUNC
|
|
static EIGEN_STRONG_INLINE float run(const float x) {
|
|
#if defined(SYCL_DEVICE_ONLY)
|
|
return cl::sycl::erfc(x);
|
|
#else
|
|
return ::erfcf(x);
|
|
#endif
|
|
}
|
|
};
|
|
|
|
template <>
|
|
struct erfc_impl<double> {
|
|
EIGEN_DEVICE_FUNC
|
|
static EIGEN_STRONG_INLINE double run(const double x) {
|
|
#if defined(SYCL_DEVICE_ONLY)
|
|
return cl::sycl::erfc(x);
|
|
#else
|
|
return ::erfc(x);
|
|
#endif
|
|
}
|
|
};
|
|
#endif // EIGEN_HAS_C99_MATH
|
|
|
|
|
|
/***************************************************************************
|
|
* Implementation of ndtri. *
|
|
****************************************************************************/
|
|
|
|
/* Inverse of Normal distribution function (modified for Eigen).
|
|
*
|
|
*
|
|
* SYNOPSIS:
|
|
*
|
|
* double x, y, ndtri();
|
|
*
|
|
* x = ndtri( y );
|
|
*
|
|
*
|
|
*
|
|
* DESCRIPTION:
|
|
*
|
|
* Returns the argument, x, for which the area under the
|
|
* Gaussian probability density function (integrated from
|
|
* minus infinity to x) is equal to y.
|
|
*
|
|
*
|
|
* For small arguments 0 < y < exp(-2), the program computes
|
|
* z = sqrt( -2.0 * log(y) ); then the approximation is
|
|
* x = z - log(z)/z - (1/z) P(1/z) / Q(1/z).
|
|
* There are two rational functions P/Q, one for 0 < y < exp(-32)
|
|
* and the other for y up to exp(-2). For larger arguments,
|
|
* w = y - 0.5, and x/sqrt(2pi) = w + w**3 R(w**2)/S(w**2)).
|
|
*
|
|
*
|
|
* ACCURACY:
|
|
*
|
|
* Relative error:
|
|
* arithmetic domain # trials peak rms
|
|
* DEC 0.125, 1 5500 9.5e-17 2.1e-17
|
|
* DEC 6e-39, 0.135 3500 5.7e-17 1.3e-17
|
|
* IEEE 0.125, 1 20000 7.2e-16 1.3e-16
|
|
* IEEE 3e-308, 0.135 50000 4.6e-16 9.8e-17
|
|
*
|
|
*
|
|
* ERROR MESSAGES:
|
|
*
|
|
* message condition value returned
|
|
* ndtri domain x <= 0 -MAXNUM
|
|
* ndtri domain x >= 1 MAXNUM
|
|
*
|
|
*/
|
|
/*
|
|
Cephes Math Library Release 2.2: June, 1992
|
|
Copyright 1985, 1987, 1992 by Stephen L. Moshier
|
|
Direct inquiries to 30 Frost Street, Cambridge, MA 02140
|
|
*/
|
|
|
|
|
|
// TODO: Add a cheaper approximation for float.
|
|
|
|
|
|
template<typename T>
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T flipsign(
|
|
const T& should_flipsign, const T& x) {
|
|
const T sign_mask = pset1<T>(-0.0);
|
|
T sign_bit = pand<T>(should_flipsign, sign_mask);
|
|
return pxor<T>(sign_bit, x);
|
|
}
|
|
|
|
template<>
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double flipsign<double>(
|
|
const double& should_flipsign, const double& x) {
|
|
return should_flipsign == 0 ? x : -x;
|
|
}
|
|
|
|
template<>
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE float flipsign<float>(
|
|
const float& should_flipsign, const float& x) {
|
|
return should_flipsign == 0 ? x : -x;
|
|
}
|
|
|
|
// We split this computation in to two so that in the scalar path
|
|
// only one branch is evaluated (due to our template specialization of pselect
|
|
// being an if statement.)
|
|
|
|
template <typename T, typename ScalarType>
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T generic_ndtri_gt_exp_neg_two(const T& b) {
|
|
const ScalarType p0[] = {
|
|
ScalarType(-5.99633501014107895267e1),
|
|
ScalarType(9.80010754185999661536e1),
|
|
ScalarType(-5.66762857469070293439e1),
|
|
ScalarType(1.39312609387279679503e1),
|
|
ScalarType(-1.23916583867381258016e0)
|
|
};
|
|
const ScalarType q0[] = {
|
|
ScalarType(1.0),
|
|
ScalarType(1.95448858338141759834e0),
|
|
ScalarType(4.67627912898881538453e0),
|
|
ScalarType(8.63602421390890590575e1),
|
|
ScalarType(-2.25462687854119370527e2),
|
|
ScalarType(2.00260212380060660359e2),
|
|
ScalarType(-8.20372256168333339912e1),
|
|
ScalarType(1.59056225126211695515e1),
|
|
ScalarType(-1.18331621121330003142e0)
|
|
};
|
|
const T sqrt2pi = pset1<T>(ScalarType(2.50662827463100050242e0));
|
|
const T half = pset1<T>(ScalarType(0.5));
|
|
T c, c2, ndtri_gt_exp_neg_two;
|
|
|
|
c = psub(b, half);
|
|
c2 = pmul(c, c);
|
|
ndtri_gt_exp_neg_two = pmadd(c, pmul(
|
|
c2, pdiv(
|
|
internal::ppolevl<T, 4>::run(c2, p0),
|
|
internal::ppolevl<T, 8>::run(c2, q0))), c);
|
|
return pmul(ndtri_gt_exp_neg_two, sqrt2pi);
|
|
}
|
|
|
|
template <typename T, typename ScalarType>
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T generic_ndtri_lt_exp_neg_two(
|
|
const T& b, const T& should_flipsign) {
|
|
/* Approximation for interval z = sqrt(-2 log a ) between 2 and 8
|
|
* i.e., a between exp(-2) = .135 and exp(-32) = 1.27e-14.
|
|
*/
|
|
const ScalarType p1[] = {
|
|
ScalarType(4.05544892305962419923e0),
|
|
ScalarType(3.15251094599893866154e1),
|
|
ScalarType(5.71628192246421288162e1),
|
|
ScalarType(4.40805073893200834700e1),
|
|
ScalarType(1.46849561928858024014e1),
|
|
ScalarType(2.18663306850790267539e0),
|
|
ScalarType(-1.40256079171354495875e-1),
|
|
ScalarType(-3.50424626827848203418e-2),
|
|
ScalarType(-8.57456785154685413611e-4)
|
|
};
|
|
const ScalarType q1[] = {
|
|
ScalarType(1.0),
|
|
ScalarType(1.57799883256466749731e1),
|
|
ScalarType(4.53907635128879210584e1),
|
|
ScalarType(4.13172038254672030440e1),
|
|
ScalarType(1.50425385692907503408e1),
|
|
ScalarType(2.50464946208309415979e0),
|
|
ScalarType(-1.42182922854787788574e-1),
|
|
ScalarType(-3.80806407691578277194e-2),
|
|
ScalarType(-9.33259480895457427372e-4)
|
|
};
|
|
/* Approximation for interval z = sqrt(-2 log a ) between 8 and 64
|
|
* i.e., a between exp(-32) = 1.27e-14 and exp(-2048) = 3.67e-890.
|
|
*/
|
|
const ScalarType p2[] = {
|
|
ScalarType(3.23774891776946035970e0),
|
|
ScalarType(6.91522889068984211695e0),
|
|
ScalarType(3.93881025292474443415e0),
|
|
ScalarType(1.33303460815807542389e0),
|
|
ScalarType(2.01485389549179081538e-1),
|
|
ScalarType(1.23716634817820021358e-2),
|
|
ScalarType(3.01581553508235416007e-4),
|
|
ScalarType(2.65806974686737550832e-6),
|
|
ScalarType(6.23974539184983293730e-9)
|
|
};
|
|
const ScalarType q2[] = {
|
|
ScalarType(1.0),
|
|
ScalarType(6.02427039364742014255e0),
|
|
ScalarType(3.67983563856160859403e0),
|
|
ScalarType(1.37702099489081330271e0),
|
|
ScalarType(2.16236993594496635890e-1),
|
|
ScalarType(1.34204006088543189037e-2),
|
|
ScalarType(3.28014464682127739104e-4),
|
|
ScalarType(2.89247864745380683936e-6),
|
|
ScalarType(6.79019408009981274425e-9)
|
|
};
|
|
const T eight = pset1<T>(ScalarType(8.0));
|
|
const T one = pset1<T>(ScalarType(1));
|
|
const T neg_two = pset1<T>(ScalarType(-2));
|
|
T x, x0, x1, z;
|
|
|
|
x = psqrt(pmul(neg_two, plog(b)));
|
|
x0 = psub(x, pdiv(plog(x), x));
|
|
z = one / x;
|
|
x1 = pmul(
|
|
z, pselect(
|
|
pcmp_lt(x, eight),
|
|
pdiv(internal::ppolevl<T, 8>::run(z, p1),
|
|
internal::ppolevl<T, 8>::run(z, q1)),
|
|
pdiv(internal::ppolevl<T, 8>::run(z, p2),
|
|
internal::ppolevl<T, 8>::run(z, q2))));
|
|
return flipsign(should_flipsign, psub(x0, x1));
|
|
}
|
|
|
|
template <typename T, typename ScalarType>
|
|
T generic_ndtri(const T& a) {
|
|
const T maxnum = pset1<T>(NumTraits<ScalarType>::infinity());
|
|
const T neg_maxnum = pset1<T>(-NumTraits<ScalarType>::infinity());
|
|
|
|
const T zero = pset1<T>(ScalarType(0));
|
|
const T one = pset1<T>(ScalarType(1));
|
|
// exp(-2)
|
|
const T exp_neg_two = pset1<T>(ScalarType(0.13533528323661269189));
|
|
T b, ndtri, should_flipsign;
|
|
|
|
should_flipsign = pcmp_le(a, psub(one, exp_neg_two));
|
|
b = pselect(should_flipsign, a, psub(one, a));
|
|
|
|
ndtri = pselect(
|
|
pcmp_lt(exp_neg_two, b),
|
|
generic_ndtri_gt_exp_neg_two<T, ScalarType>(b),
|
|
generic_ndtri_lt_exp_neg_two<T, ScalarType>(b, should_flipsign));
|
|
|
|
return pselect(
|
|
pcmp_le(a, zero), neg_maxnum,
|
|
pselect(pcmp_le(one, a), maxnum, ndtri));
|
|
}
|
|
|
|
template <typename Scalar>
|
|
struct ndtri_retval {
|
|
typedef Scalar type;
|
|
};
|
|
|
|
#if !EIGEN_HAS_C99_MATH
|
|
|
|
template <typename Scalar>
|
|
struct ndtri_impl {
|
|
EIGEN_DEVICE_FUNC
|
|
static EIGEN_STRONG_INLINE Scalar run(const Scalar) {
|
|
EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
|
|
THIS_TYPE_IS_NOT_SUPPORTED);
|
|
return Scalar(0);
|
|
}
|
|
};
|
|
|
|
# else
|
|
|
|
template <typename Scalar>
|
|
struct ndtri_impl {
|
|
EIGEN_DEVICE_FUNC
|
|
static EIGEN_STRONG_INLINE Scalar run(const Scalar x) {
|
|
return generic_ndtri<Scalar, Scalar>(x);
|
|
}
|
|
};
|
|
|
|
#endif // EIGEN_HAS_C99_MATH
|
|
|
|
|
|
/**************************************************************************************************************
|
|
* Implementation of igammac (complemented incomplete gamma integral), based on Cephes but requires C++11/C99 *
|
|
**************************************************************************************************************/
|
|
|
|
template <typename Scalar>
|
|
struct igammac_retval {
|
|
typedef Scalar type;
|
|
};
|
|
|
|
// NOTE: cephes_helper is also used to implement zeta
|
|
template <typename Scalar>
|
|
struct cephes_helper {
|
|
EIGEN_DEVICE_FUNC
|
|
static EIGEN_STRONG_INLINE Scalar machep() { assert(false && "machep not supported for this type"); return 0.0; }
|
|
EIGEN_DEVICE_FUNC
|
|
static EIGEN_STRONG_INLINE Scalar big() { assert(false && "big not supported for this type"); return 0.0; }
|
|
EIGEN_DEVICE_FUNC
|
|
static EIGEN_STRONG_INLINE Scalar biginv() { assert(false && "biginv not supported for this type"); return 0.0; }
|
|
};
|
|
|
|
template <>
|
|
struct cephes_helper<float> {
|
|
EIGEN_DEVICE_FUNC
|
|
static EIGEN_STRONG_INLINE float machep() {
|
|
return NumTraits<float>::epsilon() / 2; // 1.0 - machep == 1.0
|
|
}
|
|
EIGEN_DEVICE_FUNC
|
|
static EIGEN_STRONG_INLINE float big() {
|
|
// use epsneg (1.0 - epsneg == 1.0)
|
|
return 1.0f / (NumTraits<float>::epsilon() / 2);
|
|
}
|
|
EIGEN_DEVICE_FUNC
|
|
static EIGEN_STRONG_INLINE float biginv() {
|
|
// epsneg
|
|
return machep();
|
|
}
|
|
};
|
|
|
|
template <>
|
|
struct cephes_helper<double> {
|
|
EIGEN_DEVICE_FUNC
|
|
static EIGEN_STRONG_INLINE double machep() {
|
|
return NumTraits<double>::epsilon() / 2; // 1.0 - machep == 1.0
|
|
}
|
|
EIGEN_DEVICE_FUNC
|
|
static EIGEN_STRONG_INLINE double big() {
|
|
return 1.0 / NumTraits<double>::epsilon();
|
|
}
|
|
EIGEN_DEVICE_FUNC
|
|
static EIGEN_STRONG_INLINE double biginv() {
|
|
// inverse of eps
|
|
return NumTraits<double>::epsilon();
|
|
}
|
|
};
|
|
|
|
enum IgammaComputationMode { VALUE, DERIVATIVE, SAMPLE_DERIVATIVE };
|
|
|
|
template <typename Scalar, IgammaComputationMode mode>
|
|
EIGEN_DEVICE_FUNC
|
|
int igamma_num_iterations() {
|
|
/* Returns the maximum number of internal iterations for igamma computation.
|
|
*/
|
|
if (mode == VALUE) {
|
|
return 2000;
|
|
}
|
|
|
|
if (internal::is_same<Scalar, float>::value) {
|
|
return 200;
|
|
} else if (internal::is_same<Scalar, double>::value) {
|
|
return 500;
|
|
} else {
|
|
return 2000;
|
|
}
|
|
}
|
|
|
|
template <typename Scalar, IgammaComputationMode mode>
|
|
struct igammac_cf_impl {
|
|
/* Computes igamc(a, x) or derivative (depending on the mode)
|
|
* using the continued fraction expansion of the complementary
|
|
* incomplete Gamma function.
|
|
*
|
|
* Preconditions:
|
|
* a > 0
|
|
* x >= 1
|
|
* x >= a
|
|
*/
|
|
EIGEN_DEVICE_FUNC
|
|
static Scalar run(Scalar a, Scalar x) {
|
|
const Scalar zero = 0;
|
|
const Scalar one = 1;
|
|
const Scalar two = 2;
|
|
const Scalar machep = cephes_helper<Scalar>::machep();
|
|
const Scalar big = cephes_helper<Scalar>::big();
|
|
const Scalar biginv = cephes_helper<Scalar>::biginv();
|
|
|
|
if ((numext::isinf)(x)) {
|
|
return zero;
|
|
}
|
|
|
|
// continued fraction
|
|
Scalar y = one - a;
|
|
Scalar z = x + y + one;
|
|
Scalar c = zero;
|
|
Scalar pkm2 = one;
|
|
Scalar qkm2 = x;
|
|
Scalar pkm1 = x + one;
|
|
Scalar qkm1 = z * x;
|
|
Scalar ans = pkm1 / qkm1;
|
|
|
|
Scalar dpkm2_da = zero;
|
|
Scalar dqkm2_da = zero;
|
|
Scalar dpkm1_da = zero;
|
|
Scalar dqkm1_da = -x;
|
|
Scalar dans_da = (dpkm1_da - ans * dqkm1_da) / qkm1;
|
|
|
|
for (int i = 0; i < igamma_num_iterations<Scalar, mode>(); i++) {
|
|
c += one;
|
|
y += one;
|
|
z += two;
|
|
|
|
Scalar yc = y * c;
|
|
Scalar pk = pkm1 * z - pkm2 * yc;
|
|
Scalar qk = qkm1 * z - qkm2 * yc;
|
|
|
|
Scalar dpk_da = dpkm1_da * z - pkm1 - dpkm2_da * yc + pkm2 * c;
|
|
Scalar dqk_da = dqkm1_da * z - qkm1 - dqkm2_da * yc + qkm2 * c;
|
|
|
|
if (qk != zero) {
|
|
Scalar ans_prev = ans;
|
|
ans = pk / qk;
|
|
|
|
Scalar dans_da_prev = dans_da;
|
|
dans_da = (dpk_da - ans * dqk_da) / qk;
|
|
|
|
if (mode == VALUE) {
|
|
if (numext::abs(ans_prev - ans) <= machep * numext::abs(ans)) {
|
|
break;
|
|
}
|
|
} else {
|
|
if (numext::abs(dans_da - dans_da_prev) <= machep) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
pkm2 = pkm1;
|
|
pkm1 = pk;
|
|
qkm2 = qkm1;
|
|
qkm1 = qk;
|
|
|
|
dpkm2_da = dpkm1_da;
|
|
dpkm1_da = dpk_da;
|
|
dqkm2_da = dqkm1_da;
|
|
dqkm1_da = dqk_da;
|
|
|
|
if (numext::abs(pk) > big) {
|
|
pkm2 *= biginv;
|
|
pkm1 *= biginv;
|
|
qkm2 *= biginv;
|
|
qkm1 *= biginv;
|
|
|
|
dpkm2_da *= biginv;
|
|
dpkm1_da *= biginv;
|
|
dqkm2_da *= biginv;
|
|
dqkm1_da *= biginv;
|
|
}
|
|
}
|
|
|
|
/* Compute x**a * exp(-x) / gamma(a) */
|
|
Scalar logax = a * numext::log(x) - x - lgamma_impl<Scalar>::run(a);
|
|
Scalar dlogax_da = numext::log(x) - digamma_impl<Scalar>::run(a);
|
|
Scalar ax = numext::exp(logax);
|
|
Scalar dax_da = ax * dlogax_da;
|
|
|
|
switch (mode) {
|
|
case VALUE:
|
|
return ans * ax;
|
|
case DERIVATIVE:
|
|
return ans * dax_da + dans_da * ax;
|
|
case SAMPLE_DERIVATIVE:
|
|
default: // this is needed to suppress clang warning
|
|
return -(dans_da + ans * dlogax_da) * x;
|
|
}
|
|
}
|
|
};
|
|
|
|
template <typename Scalar, IgammaComputationMode mode>
|
|
struct igamma_series_impl {
|
|
/* Computes igam(a, x) or its derivative (depending on the mode)
|
|
* using the series expansion of the incomplete Gamma function.
|
|
*
|
|
* Preconditions:
|
|
* x > 0
|
|
* a > 0
|
|
* !(x > 1 && x > a)
|
|
*/
|
|
EIGEN_DEVICE_FUNC
|
|
static Scalar run(Scalar a, Scalar x) {
|
|
const Scalar zero = 0;
|
|
const Scalar one = 1;
|
|
const Scalar machep = cephes_helper<Scalar>::machep();
|
|
|
|
/* power series */
|
|
Scalar r = a;
|
|
Scalar c = one;
|
|
Scalar ans = one;
|
|
|
|
Scalar dc_da = zero;
|
|
Scalar dans_da = zero;
|
|
|
|
for (int i = 0; i < igamma_num_iterations<Scalar, mode>(); i++) {
|
|
r += one;
|
|
Scalar term = x / r;
|
|
Scalar dterm_da = -x / (r * r);
|
|
dc_da = term * dc_da + dterm_da * c;
|
|
dans_da += dc_da;
|
|
c *= term;
|
|
ans += c;
|
|
|
|
if (mode == VALUE) {
|
|
if (c <= machep * ans) {
|
|
break;
|
|
}
|
|
} else {
|
|
if (numext::abs(dc_da) <= machep * numext::abs(dans_da)) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Compute x**a * exp(-x) / gamma(a + 1) */
|
|
Scalar logax = a * numext::log(x) - x - lgamma_impl<Scalar>::run(a + one);
|
|
Scalar dlogax_da = numext::log(x) - digamma_impl<Scalar>::run(a + one);
|
|
Scalar ax = numext::exp(logax);
|
|
Scalar dax_da = ax * dlogax_da;
|
|
|
|
switch (mode) {
|
|
case VALUE:
|
|
return ans * ax;
|
|
case DERIVATIVE:
|
|
return ans * dax_da + dans_da * ax;
|
|
case SAMPLE_DERIVATIVE:
|
|
default: // this is needed to suppress clang warning
|
|
return -(dans_da + ans * dlogax_da) * x / a;
|
|
}
|
|
}
|
|
};
|
|
|
|
#if !EIGEN_HAS_C99_MATH
|
|
|
|
template <typename Scalar>
|
|
struct igammac_impl {
|
|
EIGEN_DEVICE_FUNC
|
|
static Scalar run(Scalar a, Scalar x) {
|
|
EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
|
|
THIS_TYPE_IS_NOT_SUPPORTED);
|
|
return Scalar(0);
|
|
}
|
|
};
|
|
|
|
#else
|
|
|
|
template <typename Scalar>
|
|
struct igammac_impl {
|
|
EIGEN_DEVICE_FUNC
|
|
static Scalar run(Scalar a, Scalar x) {
|
|
/* igamc()
|
|
*
|
|
* Incomplete gamma integral (modified for Eigen)
|
|
*
|
|
*
|
|
*
|
|
* SYNOPSIS:
|
|
*
|
|
* double a, x, y, igamc();
|
|
*
|
|
* y = igamc( a, x );
|
|
*
|
|
* DESCRIPTION:
|
|
*
|
|
* The function is defined by
|
|
*
|
|
*
|
|
* igamc(a,x) = 1 - igam(a,x)
|
|
*
|
|
* inf.
|
|
* -
|
|
* 1 | | -t a-1
|
|
* = ----- | e t dt.
|
|
* - | |
|
|
* | (a) -
|
|
* x
|
|
*
|
|
*
|
|
* In this implementation both arguments must be positive.
|
|
* The integral is evaluated by either a power series or
|
|
* continued fraction expansion, depending on the relative
|
|
* values of a and x.
|
|
*
|
|
* ACCURACY (float):
|
|
*
|
|
* Relative error:
|
|
* arithmetic domain # trials peak rms
|
|
* IEEE 0,30 30000 7.8e-6 5.9e-7
|
|
*
|
|
*
|
|
* ACCURACY (double):
|
|
*
|
|
* Tested at random a, x.
|
|
* a x Relative error:
|
|
* arithmetic domain domain # trials peak rms
|
|
* IEEE 0.5,100 0,100 200000 1.9e-14 1.7e-15
|
|
* IEEE 0.01,0.5 0,100 200000 1.4e-13 1.6e-15
|
|
*
|
|
*/
|
|
/*
|
|
Cephes Math Library Release 2.2: June, 1992
|
|
Copyright 1985, 1987, 1992 by Stephen L. Moshier
|
|
Direct inquiries to 30 Frost Street, Cambridge, MA 02140
|
|
*/
|
|
const Scalar zero = 0;
|
|
const Scalar one = 1;
|
|
const Scalar nan = NumTraits<Scalar>::quiet_NaN();
|
|
|
|
if ((x < zero) || (a <= zero)) {
|
|
// domain error
|
|
return nan;
|
|
}
|
|
|
|
if ((numext::isnan)(a) || (numext::isnan)(x)) { // propagate nans
|
|
return nan;
|
|
}
|
|
|
|
if ((x < one) || (x < a)) {
|
|
return (one - igamma_series_impl<Scalar, VALUE>::run(a, x));
|
|
}
|
|
|
|
return igammac_cf_impl<Scalar, VALUE>::run(a, x);
|
|
}
|
|
};
|
|
|
|
#endif // EIGEN_HAS_C99_MATH
|
|
|
|
/************************************************************************************************
|
|
* Implementation of igamma (incomplete gamma integral), based on Cephes but requires C++11/C99 *
|
|
************************************************************************************************/
|
|
|
|
#if !EIGEN_HAS_C99_MATH
|
|
|
|
template <typename Scalar, IgammaComputationMode mode>
|
|
struct igamma_generic_impl {
|
|
EIGEN_DEVICE_FUNC
|
|
static EIGEN_STRONG_INLINE Scalar run(Scalar a, Scalar x) {
|
|
EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
|
|
THIS_TYPE_IS_NOT_SUPPORTED);
|
|
return Scalar(0);
|
|
}
|
|
};
|
|
|
|
#else
|
|
|
|
template <typename Scalar, IgammaComputationMode mode>
|
|
struct igamma_generic_impl {
|
|
EIGEN_DEVICE_FUNC
|
|
static Scalar run(Scalar a, Scalar x) {
|
|
/* Depending on the mode, returns
|
|
* - VALUE: incomplete Gamma function igamma(a, x)
|
|
* - DERIVATIVE: derivative of incomplete Gamma function d/da igamma(a, x)
|
|
* - SAMPLE_DERIVATIVE: implicit derivative of a Gamma random variable
|
|
* x ~ Gamma(x | a, 1), dx/da = -1 / Gamma(x | a, 1) * d igamma(a, x) / dx
|
|
*
|
|
* Derivatives are implemented by forward-mode differentiation.
|
|
*/
|
|
const Scalar zero = 0;
|
|
const Scalar one = 1;
|
|
const Scalar nan = NumTraits<Scalar>::quiet_NaN();
|
|
|
|
if (x == zero) return zero;
|
|
|
|
if ((x < zero) || (a <= zero)) { // domain error
|
|
return nan;
|
|
}
|
|
|
|
if ((numext::isnan)(a) || (numext::isnan)(x)) { // propagate nans
|
|
return nan;
|
|
}
|
|
|
|
if ((x > one) && (x > a)) {
|
|
Scalar ret = igammac_cf_impl<Scalar, mode>::run(a, x);
|
|
if (mode == VALUE) {
|
|
return one - ret;
|
|
} else {
|
|
return -ret;
|
|
}
|
|
}
|
|
|
|
return igamma_series_impl<Scalar, mode>::run(a, x);
|
|
}
|
|
};
|
|
|
|
#endif // EIGEN_HAS_C99_MATH
|
|
|
|
template <typename Scalar>
|
|
struct igamma_retval {
|
|
typedef Scalar type;
|
|
};
|
|
|
|
template <typename Scalar>
|
|
struct igamma_impl : igamma_generic_impl<Scalar, VALUE> {
|
|
/* igam()
|
|
* Incomplete gamma integral.
|
|
*
|
|
* The CDF of Gamma(a, 1) random variable at the point x.
|
|
*
|
|
* Accuracy estimation. For each a in [10^-2, 10^-1...10^3] we sample
|
|
* 50 Gamma random variables x ~ Gamma(x | a, 1), a total of 300 points.
|
|
* The ground truth is computed by mpmath. Mean absolute error:
|
|
* float: 1.26713e-05
|
|
* double: 2.33606e-12
|
|
*
|
|
* Cephes documentation below.
|
|
*
|
|
* SYNOPSIS:
|
|
*
|
|
* double a, x, y, igam();
|
|
*
|
|
* y = igam( a, x );
|
|
*
|
|
* DESCRIPTION:
|
|
*
|
|
* The function is defined by
|
|
*
|
|
* x
|
|
* -
|
|
* 1 | | -t a-1
|
|
* igam(a,x) = ----- | e t dt.
|
|
* - | |
|
|
* | (a) -
|
|
* 0
|
|
*
|
|
*
|
|
* In this implementation both arguments must be positive.
|
|
* The integral is evaluated by either a power series or
|
|
* continued fraction expansion, depending on the relative
|
|
* values of a and x.
|
|
*
|
|
* ACCURACY (double):
|
|
*
|
|
* Relative error:
|
|
* arithmetic domain # trials peak rms
|
|
* IEEE 0,30 200000 3.6e-14 2.9e-15
|
|
* IEEE 0,100 300000 9.9e-14 1.5e-14
|
|
*
|
|
*
|
|
* ACCURACY (float):
|
|
*
|
|
* Relative error:
|
|
* arithmetic domain # trials peak rms
|
|
* IEEE 0,30 20000 7.8e-6 5.9e-7
|
|
*
|
|
*/
|
|
/*
|
|
Cephes Math Library Release 2.2: June, 1992
|
|
Copyright 1985, 1987, 1992 by Stephen L. Moshier
|
|
Direct inquiries to 30 Frost Street, Cambridge, MA 02140
|
|
*/
|
|
|
|
/* left tail of incomplete gamma function:
|
|
*
|
|
* inf. k
|
|
* a -x - x
|
|
* x e > ----------
|
|
* - -
|
|
* k=0 | (a+k+1)
|
|
*
|
|
*/
|
|
};
|
|
|
|
template <typename Scalar>
|
|
struct igamma_der_a_retval : igamma_retval<Scalar> {};
|
|
|
|
template <typename Scalar>
|
|
struct igamma_der_a_impl : igamma_generic_impl<Scalar, DERIVATIVE> {
|
|
/* Derivative of the incomplete Gamma function with respect to a.
|
|
*
|
|
* Computes d/da igamma(a, x) by forward differentiation of the igamma code.
|
|
*
|
|
* Accuracy estimation. For each a in [10^-2, 10^-1...10^3] we sample
|
|
* 50 Gamma random variables x ~ Gamma(x | a, 1), a total of 300 points.
|
|
* The ground truth is computed by mpmath. Mean absolute error:
|
|
* float: 6.17992e-07
|
|
* double: 4.60453e-12
|
|
*
|
|
* Reference:
|
|
* R. Moore. "Algorithm AS 187: Derivatives of the incomplete gamma
|
|
* integral". Journal of the Royal Statistical Society. 1982
|
|
*/
|
|
};
|
|
|
|
template <typename Scalar>
|
|
struct gamma_sample_der_alpha_retval : igamma_retval<Scalar> {};
|
|
|
|
template <typename Scalar>
|
|
struct gamma_sample_der_alpha_impl
|
|
: igamma_generic_impl<Scalar, SAMPLE_DERIVATIVE> {
|
|
/* Derivative of a Gamma random variable sample with respect to alpha.
|
|
*
|
|
* Consider a sample of a Gamma random variable with the concentration
|
|
* parameter alpha: sample ~ Gamma(alpha, 1). The reparameterization
|
|
* derivative that we want to compute is dsample / dalpha =
|
|
* d igammainv(alpha, u) / dalpha, where u = igamma(alpha, sample).
|
|
* However, this formula is numerically unstable and expensive, so instead
|
|
* we use implicit differentiation:
|
|
*
|
|
* igamma(alpha, sample) = u, where u ~ Uniform(0, 1).
|
|
* Apply d / dalpha to both sides:
|
|
* d igamma(alpha, sample) / dalpha
|
|
* + d igamma(alpha, sample) / dsample * dsample/dalpha = 0
|
|
* d igamma(alpha, sample) / dalpha
|
|
* + Gamma(sample | alpha, 1) dsample / dalpha = 0
|
|
* dsample/dalpha = - (d igamma(alpha, sample) / dalpha)
|
|
* / Gamma(sample | alpha, 1)
|
|
*
|
|
* Here Gamma(sample | alpha, 1) is the PDF of the Gamma distribution
|
|
* (note that the derivative of the CDF w.r.t. sample is the PDF).
|
|
* See the reference below for more details.
|
|
*
|
|
* The derivative of igamma(alpha, sample) is computed by forward
|
|
* differentiation of the igamma code. Division by the Gamma PDF is performed
|
|
* in the same code, increasing the accuracy and speed due to cancellation
|
|
* of some terms.
|
|
*
|
|
* Accuracy estimation. For each alpha in [10^-2, 10^-1...10^3] we sample
|
|
* 50 Gamma random variables sample ~ Gamma(sample | alpha, 1), a total of 300
|
|
* points. The ground truth is computed by mpmath. Mean absolute error:
|
|
* float: 2.1686e-06
|
|
* double: 1.4774e-12
|
|
*
|
|
* Reference:
|
|
* M. Figurnov, S. Mohamed, A. Mnih "Implicit Reparameterization Gradients".
|
|
* 2018
|
|
*/
|
|
};
|
|
|
|
/*****************************************************************************
|
|
* Implementation of Riemann zeta function of two arguments, based on Cephes *
|
|
*****************************************************************************/
|
|
|
|
template <typename Scalar>
|
|
struct zeta_retval {
|
|
typedef Scalar type;
|
|
};
|
|
|
|
template <typename Scalar>
|
|
struct zeta_impl_series {
|
|
EIGEN_DEVICE_FUNC
|
|
static EIGEN_STRONG_INLINE Scalar run(const Scalar) {
|
|
EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
|
|
THIS_TYPE_IS_NOT_SUPPORTED);
|
|
return Scalar(0);
|
|
}
|
|
};
|
|
|
|
template <>
|
|
struct zeta_impl_series<float> {
|
|
EIGEN_DEVICE_FUNC
|
|
static EIGEN_STRONG_INLINE bool run(float& a, float& b, float& s, const float x, const float machep) {
|
|
int i = 0;
|
|
while(i < 9)
|
|
{
|
|
i += 1;
|
|
a += 1.0f;
|
|
b = numext::pow( a, -x );
|
|
s += b;
|
|
if( numext::abs(b/s) < machep )
|
|
return true;
|
|
}
|
|
|
|
//Return whether we are done
|
|
return false;
|
|
}
|
|
};
|
|
|
|
template <>
|
|
struct zeta_impl_series<double> {
|
|
EIGEN_DEVICE_FUNC
|
|
static EIGEN_STRONG_INLINE bool run(double& a, double& b, double& s, const double x, const double machep) {
|
|
int i = 0;
|
|
while( (i < 9) || (a <= 9.0) )
|
|
{
|
|
i += 1;
|
|
a += 1.0;
|
|
b = numext::pow( a, -x );
|
|
s += b;
|
|
if( numext::abs(b/s) < machep )
|
|
return true;
|
|
}
|
|
|
|
//Return whether we are done
|
|
return false;
|
|
}
|
|
};
|
|
|
|
template <typename Scalar>
|
|
struct zeta_impl {
|
|
EIGEN_DEVICE_FUNC
|
|
static Scalar run(Scalar x, Scalar q) {
|
|
/* zeta.c
|
|
*
|
|
* Riemann zeta function of two arguments
|
|
*
|
|
*
|
|
*
|
|
* SYNOPSIS:
|
|
*
|
|
* double x, q, y, zeta();
|
|
*
|
|
* y = zeta( x, q );
|
|
*
|
|
*
|
|
*
|
|
* DESCRIPTION:
|
|
*
|
|
*
|
|
*
|
|
* inf.
|
|
* - -x
|
|
* zeta(x,q) = > (k+q)
|
|
* -
|
|
* k=0
|
|
*
|
|
* where x > 1 and q is not a negative integer or zero.
|
|
* The Euler-Maclaurin summation formula is used to obtain
|
|
* the expansion
|
|
*
|
|
* n
|
|
* - -x
|
|
* zeta(x,q) = > (k+q)
|
|
* -
|
|
* k=1
|
|
*
|
|
* 1-x inf. B x(x+1)...(x+2j)
|
|
* (n+q) 1 - 2j
|
|
* + --------- - ------- + > --------------------
|
|
* x-1 x - x+2j+1
|
|
* 2(n+q) j=1 (2j)! (n+q)
|
|
*
|
|
* where the B2j are Bernoulli numbers. Note that (see zetac.c)
|
|
* zeta(x,1) = zetac(x) + 1.
|
|
*
|
|
*
|
|
*
|
|
* ACCURACY:
|
|
*
|
|
* Relative error for single precision:
|
|
* arithmetic domain # trials peak rms
|
|
* IEEE 0,25 10000 6.9e-7 1.0e-7
|
|
*
|
|
* Large arguments may produce underflow in powf(), in which
|
|
* case the results are inaccurate.
|
|
*
|
|
* REFERENCE:
|
|
*
|
|
* Gradshteyn, I. S., and I. M. Ryzhik, Tables of Integrals,
|
|
* Series, and Products, p. 1073; Academic Press, 1980.
|
|
*
|
|
*/
|
|
|
|
int i;
|
|
Scalar p, r, a, b, k, s, t, w;
|
|
|
|
const Scalar A[] = {
|
|
Scalar(12.0),
|
|
Scalar(-720.0),
|
|
Scalar(30240.0),
|
|
Scalar(-1209600.0),
|
|
Scalar(47900160.0),
|
|
Scalar(-1.8924375803183791606e9), /*1.307674368e12/691*/
|
|
Scalar(7.47242496e10),
|
|
Scalar(-2.950130727918164224e12), /*1.067062284288e16/3617*/
|
|
Scalar(1.1646782814350067249e14), /*5.109094217170944e18/43867*/
|
|
Scalar(-4.5979787224074726105e15), /*8.028576626982912e20/174611*/
|
|
Scalar(1.8152105401943546773e17), /*1.5511210043330985984e23/854513*/
|
|
Scalar(-7.1661652561756670113e18) /*1.6938241367317436694528e27/236364091*/
|
|
};
|
|
|
|
const Scalar maxnum = NumTraits<Scalar>::infinity();
|
|
const Scalar zero = 0.0, half = 0.5, one = 1.0;
|
|
const Scalar machep = cephes_helper<Scalar>::machep();
|
|
const Scalar nan = NumTraits<Scalar>::quiet_NaN();
|
|
|
|
if( x == one )
|
|
return maxnum;
|
|
|
|
if( x < one )
|
|
{
|
|
return nan;
|
|
}
|
|
|
|
if( q <= zero )
|
|
{
|
|
if(q == numext::floor(q))
|
|
{
|
|
return maxnum;
|
|
}
|
|
p = x;
|
|
r = numext::floor(p);
|
|
if (p != r)
|
|
return nan;
|
|
}
|
|
|
|
/* Permit negative q but continue sum until n+q > +9 .
|
|
* This case should be handled by a reflection formula.
|
|
* If q<0 and x is an integer, there is a relation to
|
|
* the polygamma function.
|
|
*/
|
|
s = numext::pow( q, -x );
|
|
a = q;
|
|
b = zero;
|
|
// Run the summation in a helper function that is specific to the floating precision
|
|
if (zeta_impl_series<Scalar>::run(a, b, s, x, machep)) {
|
|
return s;
|
|
}
|
|
|
|
w = a;
|
|
s += b*w/(x-one);
|
|
s -= half * b;
|
|
a = one;
|
|
k = zero;
|
|
for( i=0; i<12; i++ )
|
|
{
|
|
a *= x + k;
|
|
b /= w;
|
|
t = a*b/A[i];
|
|
s = s + t;
|
|
t = numext::abs(t/s);
|
|
if( t < machep ) {
|
|
break;
|
|
}
|
|
k += one;
|
|
a *= x + k;
|
|
b /= w;
|
|
k += one;
|
|
}
|
|
return s;
|
|
}
|
|
};
|
|
|
|
/****************************************************************************
|
|
* Implementation of polygamma function, requires C++11/C99 *
|
|
****************************************************************************/
|
|
|
|
template <typename Scalar>
|
|
struct polygamma_retval {
|
|
typedef Scalar type;
|
|
};
|
|
|
|
#if !EIGEN_HAS_C99_MATH
|
|
|
|
template <typename Scalar>
|
|
struct polygamma_impl {
|
|
EIGEN_DEVICE_FUNC
|
|
static EIGEN_STRONG_INLINE Scalar run(Scalar n, Scalar x) {
|
|
EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
|
|
THIS_TYPE_IS_NOT_SUPPORTED);
|
|
return Scalar(0);
|
|
}
|
|
};
|
|
|
|
#else
|
|
|
|
template <typename Scalar>
|
|
struct polygamma_impl {
|
|
EIGEN_DEVICE_FUNC
|
|
static Scalar run(Scalar n, Scalar x) {
|
|
Scalar zero = 0.0, one = 1.0;
|
|
Scalar nplus = n + one;
|
|
const Scalar nan = NumTraits<Scalar>::quiet_NaN();
|
|
|
|
// Check that n is an integer
|
|
if (numext::floor(n) != n) {
|
|
return nan;
|
|
}
|
|
// Just return the digamma function for n = 1
|
|
else if (n == zero) {
|
|
return digamma_impl<Scalar>::run(x);
|
|
}
|
|
// Use the same implementation as scipy
|
|
else {
|
|
Scalar factorial = numext::exp(lgamma_impl<Scalar>::run(nplus));
|
|
return numext::pow(-one, nplus) * factorial * zeta_impl<Scalar>::run(nplus, x);
|
|
}
|
|
}
|
|
};
|
|
|
|
#endif // EIGEN_HAS_C99_MATH
|
|
|
|
/************************************************************************************************
|
|
* Implementation of betainc (incomplete beta integral), based on Cephes but requires C++11/C99 *
|
|
************************************************************************************************/
|
|
|
|
template <typename Scalar>
|
|
struct betainc_retval {
|
|
typedef Scalar type;
|
|
};
|
|
|
|
#if !EIGEN_HAS_C99_MATH
|
|
|
|
template <typename Scalar>
|
|
struct betainc_impl {
|
|
EIGEN_DEVICE_FUNC
|
|
static EIGEN_STRONG_INLINE Scalar run(Scalar a, Scalar b, Scalar x) {
|
|
EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
|
|
THIS_TYPE_IS_NOT_SUPPORTED);
|
|
return Scalar(0);
|
|
}
|
|
};
|
|
|
|
#else
|
|
|
|
template <typename Scalar>
|
|
struct betainc_impl {
|
|
EIGEN_DEVICE_FUNC
|
|
static EIGEN_STRONG_INLINE Scalar run(Scalar, Scalar, Scalar) {
|
|
/* betaincf.c
|
|
*
|
|
* Incomplete beta integral
|
|
*
|
|
*
|
|
* SYNOPSIS:
|
|
*
|
|
* float a, b, x, y, betaincf();
|
|
*
|
|
* y = betaincf( a, b, x );
|
|
*
|
|
*
|
|
* DESCRIPTION:
|
|
*
|
|
* Returns incomplete beta integral of the arguments, evaluated
|
|
* from zero to x. The function is defined as
|
|
*
|
|
* x
|
|
* - -
|
|
* | (a+b) | | a-1 b-1
|
|
* ----------- | t (1-t) dt.
|
|
* - - | |
|
|
* | (a) | (b) -
|
|
* 0
|
|
*
|
|
* The domain of definition is 0 <= x <= 1. In this
|
|
* implementation a and b are restricted to positive values.
|
|
* The integral from x to 1 may be obtained by the symmetry
|
|
* relation
|
|
*
|
|
* 1 - betainc( a, b, x ) = betainc( b, a, 1-x ).
|
|
*
|
|
* The integral is evaluated by a continued fraction expansion.
|
|
* If a < 1, the function calls itself recursively after a
|
|
* transformation to increase a to a+1.
|
|
*
|
|
* ACCURACY (float):
|
|
*
|
|
* Tested at random points (a,b,x) with a and b in the indicated
|
|
* interval and x between 0 and 1.
|
|
*
|
|
* arithmetic domain # trials peak rms
|
|
* Relative error:
|
|
* IEEE 0,30 10000 3.7e-5 5.1e-6
|
|
* IEEE 0,100 10000 1.7e-4 2.5e-5
|
|
* The useful domain for relative error is limited by underflow
|
|
* of the single precision exponential function.
|
|
* Absolute error:
|
|
* IEEE 0,30 100000 2.2e-5 9.6e-7
|
|
* IEEE 0,100 10000 6.5e-5 3.7e-6
|
|
*
|
|
* Larger errors may occur for extreme ratios of a and b.
|
|
*
|
|
* ACCURACY (double):
|
|
* arithmetic domain # trials peak rms
|
|
* IEEE 0,5 10000 6.9e-15 4.5e-16
|
|
* IEEE 0,85 250000 2.2e-13 1.7e-14
|
|
* IEEE 0,1000 30000 5.3e-12 6.3e-13
|
|
* IEEE 0,10000 250000 9.3e-11 7.1e-12
|
|
* IEEE 0,100000 10000 8.7e-10 4.8e-11
|
|
* Outputs smaller than the IEEE gradual underflow threshold
|
|
* were excluded from these statistics.
|
|
*
|
|
* ERROR MESSAGES:
|
|
* message condition value returned
|
|
* incbet domain x<0, x>1 nan
|
|
* incbet underflow nan
|
|
*/
|
|
|
|
EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
|
|
THIS_TYPE_IS_NOT_SUPPORTED);
|
|
return Scalar(0);
|
|
}
|
|
};
|
|
|
|
/* Continued fraction expansion #1 for incomplete beta integral (small_branch = True)
|
|
* Continued fraction expansion #2 for incomplete beta integral (small_branch = False)
|
|
*/
|
|
template <typename Scalar>
|
|
struct incbeta_cfe {
|
|
EIGEN_DEVICE_FUNC
|
|
static EIGEN_STRONG_INLINE Scalar run(Scalar a, Scalar b, Scalar x, bool small_branch) {
|
|
EIGEN_STATIC_ASSERT((internal::is_same<Scalar, float>::value ||
|
|
internal::is_same<Scalar, double>::value),
|
|
THIS_TYPE_IS_NOT_SUPPORTED);
|
|
const Scalar big = cephes_helper<Scalar>::big();
|
|
const Scalar machep = cephes_helper<Scalar>::machep();
|
|
const Scalar biginv = cephes_helper<Scalar>::biginv();
|
|
|
|
const Scalar zero = 0;
|
|
const Scalar one = 1;
|
|
const Scalar two = 2;
|
|
|
|
Scalar xk, pk, pkm1, pkm2, qk, qkm1, qkm2;
|
|
Scalar k1, k2, k3, k4, k5, k6, k7, k8, k26update;
|
|
Scalar ans;
|
|
int n;
|
|
|
|
const int num_iters = (internal::is_same<Scalar, float>::value) ? 100 : 300;
|
|
const Scalar thresh =
|
|
(internal::is_same<Scalar, float>::value) ? machep : Scalar(3) * machep;
|
|
Scalar r = (internal::is_same<Scalar, float>::value) ? zero : one;
|
|
|
|
if (small_branch) {
|
|
k1 = a;
|
|
k2 = a + b;
|
|
k3 = a;
|
|
k4 = a + one;
|
|
k5 = one;
|
|
k6 = b - one;
|
|
k7 = k4;
|
|
k8 = a + two;
|
|
k26update = one;
|
|
} else {
|
|
k1 = a;
|
|
k2 = b - one;
|
|
k3 = a;
|
|
k4 = a + one;
|
|
k5 = one;
|
|
k6 = a + b;
|
|
k7 = a + one;
|
|
k8 = a + two;
|
|
k26update = -one;
|
|
x = x / (one - x);
|
|
}
|
|
|
|
pkm2 = zero;
|
|
qkm2 = one;
|
|
pkm1 = one;
|
|
qkm1 = one;
|
|
ans = one;
|
|
n = 0;
|
|
|
|
do {
|
|
xk = -(x * k1 * k2) / (k3 * k4);
|
|
pk = pkm1 + pkm2 * xk;
|
|
qk = qkm1 + qkm2 * xk;
|
|
pkm2 = pkm1;
|
|
pkm1 = pk;
|
|
qkm2 = qkm1;
|
|
qkm1 = qk;
|
|
|
|
xk = (x * k5 * k6) / (k7 * k8);
|
|
pk = pkm1 + pkm2 * xk;
|
|
qk = qkm1 + qkm2 * xk;
|
|
pkm2 = pkm1;
|
|
pkm1 = pk;
|
|
qkm2 = qkm1;
|
|
qkm1 = qk;
|
|
|
|
if (qk != zero) {
|
|
r = pk / qk;
|
|
if (numext::abs(ans - r) < numext::abs(r) * thresh) {
|
|
return r;
|
|
}
|
|
ans = r;
|
|
}
|
|
|
|
k1 += one;
|
|
k2 += k26update;
|
|
k3 += two;
|
|
k4 += two;
|
|
k5 += one;
|
|
k6 -= k26update;
|
|
k7 += two;
|
|
k8 += two;
|
|
|
|
if ((numext::abs(qk) + numext::abs(pk)) > big) {
|
|
pkm2 *= biginv;
|
|
pkm1 *= biginv;
|
|
qkm2 *= biginv;
|
|
qkm1 *= biginv;
|
|
}
|
|
if ((numext::abs(qk) < biginv) || (numext::abs(pk) < biginv)) {
|
|
pkm2 *= big;
|
|
pkm1 *= big;
|
|
qkm2 *= big;
|
|
qkm1 *= big;
|
|
}
|
|
} while (++n < num_iters);
|
|
|
|
return ans;
|
|
}
|
|
};
|
|
|
|
/* Helper functions depending on the Scalar type */
|
|
template <typename Scalar>
|
|
struct betainc_helper {};
|
|
|
|
template <>
|
|
struct betainc_helper<float> {
|
|
/* Core implementation, assumes a large (> 1.0) */
|
|
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE float incbsa(float aa, float bb,
|
|
float xx) {
|
|
float ans, a, b, t, x, onemx;
|
|
bool reversed_a_b = false;
|
|
|
|
onemx = 1.0f - xx;
|
|
|
|
/* see if x is greater than the mean */
|
|
if (xx > (aa / (aa + bb))) {
|
|
reversed_a_b = true;
|
|
a = bb;
|
|
b = aa;
|
|
t = xx;
|
|
x = onemx;
|
|
} else {
|
|
a = aa;
|
|
b = bb;
|
|
t = onemx;
|
|
x = xx;
|
|
}
|
|
|
|
/* Choose expansion for optimal convergence */
|
|
if (b > 10.0f) {
|
|
if (numext::abs(b * x / a) < 0.3f) {
|
|
t = betainc_helper<float>::incbps(a, b, x);
|
|
if (reversed_a_b) t = 1.0f - t;
|
|
return t;
|
|
}
|
|
}
|
|
|
|
ans = x * (a + b - 2.0f) / (a - 1.0f);
|
|
if (ans < 1.0f) {
|
|
ans = incbeta_cfe<float>::run(a, b, x, true /* small_branch */);
|
|
t = b * numext::log(t);
|
|
} else {
|
|
ans = incbeta_cfe<float>::run(a, b, x, false /* small_branch */);
|
|
t = (b - 1.0f) * numext::log(t);
|
|
}
|
|
|
|
t += a * numext::log(x) + lgamma_impl<float>::run(a + b) -
|
|
lgamma_impl<float>::run(a) - lgamma_impl<float>::run(b);
|
|
t += numext::log(ans / a);
|
|
t = numext::exp(t);
|
|
|
|
if (reversed_a_b) t = 1.0f - t;
|
|
return t;
|
|
}
|
|
|
|
EIGEN_DEVICE_FUNC
|
|
static EIGEN_STRONG_INLINE float incbps(float a, float b, float x) {
|
|
float t, u, y, s;
|
|
const float machep = cephes_helper<float>::machep();
|
|
|
|
y = a * numext::log(x) + (b - 1.0f) * numext::log1p(-x) - numext::log(a);
|
|
y -= lgamma_impl<float>::run(a) + lgamma_impl<float>::run(b);
|
|
y += lgamma_impl<float>::run(a + b);
|
|
|
|
t = x / (1.0f - x);
|
|
s = 0.0f;
|
|
u = 1.0f;
|
|
do {
|
|
b -= 1.0f;
|
|
if (b == 0.0f) {
|
|
break;
|
|
}
|
|
a += 1.0f;
|
|
u *= t * b / a;
|
|
s += u;
|
|
} while (numext::abs(u) > machep);
|
|
|
|
return numext::exp(y) * (1.0f + s);
|
|
}
|
|
};
|
|
|
|
template <>
|
|
struct betainc_impl<float> {
|
|
EIGEN_DEVICE_FUNC
|
|
static float run(float a, float b, float x) {
|
|
const float nan = NumTraits<float>::quiet_NaN();
|
|
float ans, t;
|
|
|
|
if (a <= 0.0f) return nan;
|
|
if (b <= 0.0f) return nan;
|
|
if ((x <= 0.0f) || (x >= 1.0f)) {
|
|
if (x == 0.0f) return 0.0f;
|
|
if (x == 1.0f) return 1.0f;
|
|
// mtherr("betaincf", DOMAIN);
|
|
return nan;
|
|
}
|
|
|
|
/* transformation for small aa */
|
|
if (a <= 1.0f) {
|
|
ans = betainc_helper<float>::incbsa(a + 1.0f, b, x);
|
|
t = a * numext::log(x) + b * numext::log1p(-x) +
|
|
lgamma_impl<float>::run(a + b) - lgamma_impl<float>::run(a + 1.0f) -
|
|
lgamma_impl<float>::run(b);
|
|
return (ans + numext::exp(t));
|
|
} else {
|
|
return betainc_helper<float>::incbsa(a, b, x);
|
|
}
|
|
}
|
|
};
|
|
|
|
template <>
|
|
struct betainc_helper<double> {
|
|
EIGEN_DEVICE_FUNC
|
|
static EIGEN_STRONG_INLINE double incbps(double a, double b, double x) {
|
|
const double machep = cephes_helper<double>::machep();
|
|
|
|
double s, t, u, v, n, t1, z, ai;
|
|
|
|
ai = 1.0 / a;
|
|
u = (1.0 - b) * x;
|
|
v = u / (a + 1.0);
|
|
t1 = v;
|
|
t = u;
|
|
n = 2.0;
|
|
s = 0.0;
|
|
z = machep * ai;
|
|
while (numext::abs(v) > z) {
|
|
u = (n - b) * x / n;
|
|
t *= u;
|
|
v = t / (a + n);
|
|
s += v;
|
|
n += 1.0;
|
|
}
|
|
s += t1;
|
|
s += ai;
|
|
|
|
u = a * numext::log(x);
|
|
// TODO: gamma() is not directly implemented in Eigen.
|
|
/*
|
|
if ((a + b) < maxgam && numext::abs(u) < maxlog) {
|
|
t = gamma(a + b) / (gamma(a) * gamma(b));
|
|
s = s * t * pow(x, a);
|
|
} else {
|
|
*/
|
|
t = lgamma_impl<double>::run(a + b) - lgamma_impl<double>::run(a) -
|
|
lgamma_impl<double>::run(b) + u + numext::log(s);
|
|
return s = numext::exp(t);
|
|
}
|
|
};
|
|
|
|
template <>
|
|
struct betainc_impl<double> {
|
|
EIGEN_DEVICE_FUNC
|
|
static double run(double aa, double bb, double xx) {
|
|
const double nan = NumTraits<double>::quiet_NaN();
|
|
const double machep = cephes_helper<double>::machep();
|
|
// const double maxgam = 171.624376956302725;
|
|
|
|
double a, b, t, x, xc, w, y;
|
|
bool reversed_a_b = false;
|
|
|
|
if (aa <= 0.0 || bb <= 0.0) {
|
|
return nan; // goto domerr;
|
|
}
|
|
|
|
if ((xx <= 0.0) || (xx >= 1.0)) {
|
|
if (xx == 0.0) return (0.0);
|
|
if (xx == 1.0) return (1.0);
|
|
// mtherr("incbet", DOMAIN);
|
|
return nan;
|
|
}
|
|
|
|
if ((bb * xx) <= 1.0 && xx <= 0.95) {
|
|
return betainc_helper<double>::incbps(aa, bb, xx);
|
|
}
|
|
|
|
w = 1.0 - xx;
|
|
|
|
/* Reverse a and b if x is greater than the mean. */
|
|
if (xx > (aa / (aa + bb))) {
|
|
reversed_a_b = true;
|
|
a = bb;
|
|
b = aa;
|
|
xc = xx;
|
|
x = w;
|
|
} else {
|
|
a = aa;
|
|
b = bb;
|
|
xc = w;
|
|
x = xx;
|
|
}
|
|
|
|
if (reversed_a_b && (b * x) <= 1.0 && x <= 0.95) {
|
|
t = betainc_helper<double>::incbps(a, b, x);
|
|
if (t <= machep) {
|
|
t = 1.0 - machep;
|
|
} else {
|
|
t = 1.0 - t;
|
|
}
|
|
return t;
|
|
}
|
|
|
|
/* Choose expansion for better convergence. */
|
|
y = x * (a + b - 2.0) - (a - 1.0);
|
|
if (y < 0.0) {
|
|
w = incbeta_cfe<double>::run(a, b, x, true /* small_branch */);
|
|
} else {
|
|
w = incbeta_cfe<double>::run(a, b, x, false /* small_branch */) / xc;
|
|
}
|
|
|
|
/* Multiply w by the factor
|
|
a b _ _ _
|
|
x (1-x) | (a+b) / ( a | (a) | (b) ) . */
|
|
|
|
y = a * numext::log(x);
|
|
t = b * numext::log(xc);
|
|
// TODO: gamma is not directly implemented in Eigen.
|
|
/*
|
|
if ((a + b) < maxgam && numext::abs(y) < maxlog && numext::abs(t) < maxlog)
|
|
{
|
|
t = pow(xc, b);
|
|
t *= pow(x, a);
|
|
t /= a;
|
|
t *= w;
|
|
t *= gamma(a + b) / (gamma(a) * gamma(b));
|
|
} else {
|
|
*/
|
|
/* Resort to logarithms. */
|
|
y += t + lgamma_impl<double>::run(a + b) - lgamma_impl<double>::run(a) -
|
|
lgamma_impl<double>::run(b);
|
|
y += numext::log(w / a);
|
|
t = numext::exp(y);
|
|
|
|
/* } */
|
|
// done:
|
|
|
|
if (reversed_a_b) {
|
|
if (t <= machep) {
|
|
t = 1.0 - machep;
|
|
} else {
|
|
t = 1.0 - t;
|
|
}
|
|
}
|
|
return t;
|
|
}
|
|
};
|
|
|
|
#endif // EIGEN_HAS_C99_MATH
|
|
|
|
/****************************************************************************
|
|
* Implementation of Bessel function, based on Cephes *
|
|
****************************************************************************/
|
|
|
|
template <typename Scalar>
|
|
struct i0e_retval {
|
|
typedef Scalar type;
|
|
};
|
|
|
|
template <typename Scalar>
|
|
struct i0e_impl {
|
|
EIGEN_DEVICE_FUNC
|
|
static EIGEN_STRONG_INLINE Scalar run(const Scalar) {
|
|
EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
|
|
THIS_TYPE_IS_NOT_SUPPORTED);
|
|
return Scalar(0);
|
|
}
|
|
};
|
|
|
|
template <>
|
|
struct i0e_impl<float> {
|
|
EIGEN_DEVICE_FUNC
|
|
static EIGEN_STRONG_INLINE float run(float x) {
|
|
/* i0ef.c
|
|
*
|
|
* Modified Bessel function of order zero,
|
|
* exponentially scaled
|
|
*
|
|
*
|
|
*
|
|
* SYNOPSIS:
|
|
*
|
|
* float x, y, i0ef();
|
|
*
|
|
* y = i0ef( x );
|
|
*
|
|
*
|
|
*
|
|
* DESCRIPTION:
|
|
*
|
|
* Returns exponentially scaled modified Bessel function
|
|
* of order zero of the argument.
|
|
*
|
|
* The function is defined as i0e(x) = exp(-|x|) j0( ix ).
|
|
*
|
|
*
|
|
*
|
|
* ACCURACY:
|
|
*
|
|
* Relative error:
|
|
* arithmetic domain # trials peak rms
|
|
* IEEE 0,30 100000 3.7e-7 7.0e-8
|
|
* See i0f().
|
|
*
|
|
*/
|
|
const float A[] = {-1.30002500998624804212E-8f, 6.04699502254191894932E-8f,
|
|
-2.67079385394061173391E-7f, 1.11738753912010371815E-6f,
|
|
-4.41673835845875056359E-6f, 1.64484480707288970893E-5f,
|
|
-5.75419501008210370398E-5f, 1.88502885095841655729E-4f,
|
|
-5.76375574538582365885E-4f, 1.63947561694133579842E-3f,
|
|
-4.32430999505057594430E-3f, 1.05464603945949983183E-2f,
|
|
-2.37374148058994688156E-2f, 4.93052842396707084878E-2f,
|
|
-9.49010970480476444210E-2f, 1.71620901522208775349E-1f,
|
|
-3.04682672343198398683E-1f, 6.76795274409476084995E-1f};
|
|
|
|
const float B[] = {3.39623202570838634515E-9f, 2.26666899049817806459E-8f,
|
|
2.04891858946906374183E-7f, 2.89137052083475648297E-6f,
|
|
6.88975834691682398426E-5f, 3.36911647825569408990E-3f,
|
|
8.04490411014108831608E-1f};
|
|
if (x < 0.0f) {
|
|
x = -x;
|
|
}
|
|
|
|
if (x <= 8.0f) {
|
|
float y = 0.5f * x - 2.0f;
|
|
return cephes::chebevl<float, 18>::run(y, A);
|
|
}
|
|
|
|
return cephes::chebevl<float, 7>::run(32.0f / x - 2.0f, B) / numext::sqrt(x);
|
|
}
|
|
};
|
|
|
|
template <>
|
|
struct i0e_impl<double> {
|
|
EIGEN_DEVICE_FUNC
|
|
static EIGEN_STRONG_INLINE double run(double x) {
|
|
/* i0e.c
|
|
*
|
|
* Modified Bessel function of order zero,
|
|
* exponentially scaled
|
|
*
|
|
*
|
|
*
|
|
* SYNOPSIS:
|
|
*
|
|
* double x, y, i0e();
|
|
*
|
|
* y = i0e( x );
|
|
*
|
|
*
|
|
*
|
|
* DESCRIPTION:
|
|
*
|
|
* Returns exponentially scaled modified Bessel function
|
|
* of order zero of the argument.
|
|
*
|
|
* The function is defined as i0e(x) = exp(-|x|) j0( ix ).
|
|
*
|
|
*
|
|
*
|
|
* ACCURACY:
|
|
*
|
|
* Relative error:
|
|
* arithmetic domain # trials peak rms
|
|
* IEEE 0,30 30000 5.4e-16 1.2e-16
|
|
* See i0().
|
|
*
|
|
*/
|
|
const double A[] = {-4.41534164647933937950E-18, 3.33079451882223809783E-17,
|
|
-2.43127984654795469359E-16, 1.71539128555513303061E-15,
|
|
-1.16853328779934516808E-14, 7.67618549860493561688E-14,
|
|
-4.85644678311192946090E-13, 2.95505266312963983461E-12,
|
|
-1.72682629144155570723E-11, 9.67580903537323691224E-11,
|
|
-5.18979560163526290666E-10, 2.65982372468238665035E-9,
|
|
-1.30002500998624804212E-8, 6.04699502254191894932E-8,
|
|
-2.67079385394061173391E-7, 1.11738753912010371815E-6,
|
|
-4.41673835845875056359E-6, 1.64484480707288970893E-5,
|
|
-5.75419501008210370398E-5, 1.88502885095841655729E-4,
|
|
-5.76375574538582365885E-4, 1.63947561694133579842E-3,
|
|
-4.32430999505057594430E-3, 1.05464603945949983183E-2,
|
|
-2.37374148058994688156E-2, 4.93052842396707084878E-2,
|
|
-9.49010970480476444210E-2, 1.71620901522208775349E-1,
|
|
-3.04682672343198398683E-1, 6.76795274409476084995E-1};
|
|
const double B[] = {
|
|
-7.23318048787475395456E-18, -4.83050448594418207126E-18,
|
|
4.46562142029675999901E-17, 3.46122286769746109310E-17,
|
|
-2.82762398051658348494E-16, -3.42548561967721913462E-16,
|
|
1.77256013305652638360E-15, 3.81168066935262242075E-15,
|
|
-9.55484669882830764870E-15, -4.15056934728722208663E-14,
|
|
1.54008621752140982691E-14, 3.85277838274214270114E-13,
|
|
7.18012445138366623367E-13, -1.79417853150680611778E-12,
|
|
-1.32158118404477131188E-11, -3.14991652796324136454E-11,
|
|
1.18891471078464383424E-11, 4.94060238822496958910E-10,
|
|
3.39623202570838634515E-9, 2.26666899049817806459E-8,
|
|
2.04891858946906374183E-7, 2.89137052083475648297E-6,
|
|
6.88975834691682398426E-5, 3.36911647825569408990E-3,
|
|
8.04490411014108831608E-1};
|
|
|
|
if (x < 0.0) {
|
|
x = -x;
|
|
}
|
|
|
|
if (x <= 8.0) {
|
|
double y = (x / 2.0) - 2.0;
|
|
return cephes::chebevl<double, 30>::run(y, A);
|
|
}
|
|
|
|
return cephes::chebevl<double, 25>::run(32.0 / x - 2.0, B) /
|
|
numext::sqrt(x);
|
|
}
|
|
};
|
|
|
|
template <typename Scalar>
|
|
struct i1e_retval {
|
|
typedef Scalar type;
|
|
};
|
|
|
|
template <typename Scalar>
|
|
struct i1e_impl {
|
|
EIGEN_DEVICE_FUNC
|
|
static EIGEN_STRONG_INLINE Scalar run(const Scalar) {
|
|
EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
|
|
THIS_TYPE_IS_NOT_SUPPORTED);
|
|
return Scalar(0);
|
|
}
|
|
};
|
|
|
|
template <>
|
|
struct i1e_impl<float> {
|
|
EIGEN_DEVICE_FUNC
|
|
static EIGEN_STRONG_INLINE float run(float x) {
|
|
/* i1ef.c
|
|
*
|
|
* Modified Bessel function of order one,
|
|
* exponentially scaled
|
|
*
|
|
*
|
|
*
|
|
* SYNOPSIS:
|
|
*
|
|
* float x, y, i1ef();
|
|
*
|
|
* y = i1ef( x );
|
|
*
|
|
*
|
|
*
|
|
* DESCRIPTION:
|
|
*
|
|
* Returns exponentially scaled modified Bessel function
|
|
* of order one of the argument.
|
|
*
|
|
* The function is defined as i1(x) = -i exp(-|x|) j1( ix ).
|
|
*
|
|
*
|
|
*
|
|
* ACCURACY:
|
|
*
|
|
* Relative error:
|
|
* arithmetic domain # trials peak rms
|
|
* IEEE 0, 30 30000 1.5e-6 1.5e-7
|
|
* See i1().
|
|
*
|
|
*/
|
|
const float A[] = {9.38153738649577178388E-9f, -4.44505912879632808065E-8f,
|
|
2.00329475355213526229E-7f, -8.56872026469545474066E-7f,
|
|
3.47025130813767847674E-6f, -1.32731636560394358279E-5f,
|
|
4.78156510755005422638E-5f, -1.61760815825896745588E-4f,
|
|
5.12285956168575772895E-4f, -1.51357245063125314899E-3f,
|
|
4.15642294431288815669E-3f, -1.05640848946261981558E-2f,
|
|
2.47264490306265168283E-2f, -5.29459812080949914269E-2f,
|
|
1.02643658689847095384E-1f, -1.76416518357834055153E-1f,
|
|
2.52587186443633654823E-1f};
|
|
|
|
const float B[] = {-3.83538038596423702205E-9f, -2.63146884688951950684E-8f,
|
|
-2.51223623787020892529E-7f, -3.88256480887769039346E-6f,
|
|
-1.10588938762623716291E-4f, -9.76109749136146840777E-3f,
|
|
7.78576235018280120474E-1f};
|
|
|
|
float z = numext::abs(x);
|
|
|
|
if (z <= 8.0f) {
|
|
float y = 0.5f * z - 2.0f;
|
|
z = cephes::chebevl<float, 17>::run(y, A) * z;
|
|
} else {
|
|
z = cephes::chebevl<float, 7>::run(32.0f / z - 2.0f, B) / numext::sqrt(z);
|
|
}
|
|
|
|
if (x < 0.0f) {
|
|
z = -z;
|
|
}
|
|
|
|
return z;
|
|
}
|
|
};
|
|
|
|
template <>
|
|
struct i1e_impl<double> {
|
|
EIGEN_DEVICE_FUNC
|
|
static EIGEN_STRONG_INLINE double run(double x) {
|
|
/* i1e.c
|
|
*
|
|
* Modified Bessel function of order one,
|
|
* exponentially scaled
|
|
*
|
|
*
|
|
*
|
|
* SYNOPSIS:
|
|
*
|
|
* double x, y, i1e();
|
|
*
|
|
* y = i1e( x );
|
|
*
|
|
*
|
|
*
|
|
* DESCRIPTION:
|
|
*
|
|
* Returns exponentially scaled modified Bessel function
|
|
* of order one of the argument.
|
|
*
|
|
* The function is defined as i1(x) = -i exp(-|x|) j1( ix ).
|
|
*
|
|
*
|
|
*
|
|
* ACCURACY:
|
|
*
|
|
* Relative error:
|
|
* arithmetic domain # trials peak rms
|
|
* IEEE 0, 30 30000 2.0e-15 2.0e-16
|
|
* See i1().
|
|
*
|
|
*/
|
|
const double A[] = {2.77791411276104639959E-18, -2.11142121435816608115E-17,
|
|
1.55363195773620046921E-16, -1.10559694773538630805E-15,
|
|
7.60068429473540693410E-15, -5.04218550472791168711E-14,
|
|
3.22379336594557470981E-13, -1.98397439776494371520E-12,
|
|
1.17361862988909016308E-11, -6.66348972350202774223E-11,
|
|
3.62559028155211703701E-10, -1.88724975172282928790E-9,
|
|
9.38153738649577178388E-9, -4.44505912879632808065E-8,
|
|
2.00329475355213526229E-7, -8.56872026469545474066E-7,
|
|
3.47025130813767847674E-6, -1.32731636560394358279E-5,
|
|
4.78156510755005422638E-5, -1.61760815825896745588E-4,
|
|
5.12285956168575772895E-4, -1.51357245063125314899E-3,
|
|
4.15642294431288815669E-3, -1.05640848946261981558E-2,
|
|
2.47264490306265168283E-2, -5.29459812080949914269E-2,
|
|
1.02643658689847095384E-1, -1.76416518357834055153E-1,
|
|
2.52587186443633654823E-1};
|
|
const double B[] = {
|
|
7.51729631084210481353E-18, 4.41434832307170791151E-18,
|
|
-4.65030536848935832153E-17, -3.20952592199342395980E-17,
|
|
2.96262899764595013876E-16, 3.30820231092092828324E-16,
|
|
-1.88035477551078244854E-15, -3.81440307243700780478E-15,
|
|
1.04202769841288027642E-14, 4.27244001671195135429E-14,
|
|
-2.10154184277266431302E-14, -4.08355111109219731823E-13,
|
|
-7.19855177624590851209E-13, 2.03562854414708950722E-12,
|
|
1.41258074366137813316E-11, 3.25260358301548823856E-11,
|
|
-1.89749581235054123450E-11, -5.58974346219658380687E-10,
|
|
-3.83538038596423702205E-9, -2.63146884688951950684E-8,
|
|
-2.51223623787020892529E-7, -3.88256480887769039346E-6,
|
|
-1.10588938762623716291E-4, -9.76109749136146840777E-3,
|
|
7.78576235018280120474E-1};
|
|
|
|
double z = numext::abs(x);
|
|
|
|
if (z <= 8.0) {
|
|
double y = (z / 2.0) - 2.0;
|
|
z = cephes::chebevl<double, 29>::run(y, A) * z;
|
|
} else {
|
|
z = cephes::chebevl<double, 25>::run(32.0 / z - 2.0, B) / numext::sqrt(z);
|
|
}
|
|
|
|
if (x < 0.0) {
|
|
z = -z;
|
|
}
|
|
|
|
return z;
|
|
}
|
|
};
|
|
|
|
} // end namespace internal
|
|
|
|
namespace numext {
|
|
|
|
template <typename Scalar>
|
|
EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(lgamma, Scalar)
|
|
lgamma(const Scalar& x) {
|
|
return EIGEN_MATHFUNC_IMPL(lgamma, Scalar)::run(x);
|
|
}
|
|
|
|
template <typename Scalar>
|
|
EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(digamma, Scalar)
|
|
digamma(const Scalar& x) {
|
|
return EIGEN_MATHFUNC_IMPL(digamma, Scalar)::run(x);
|
|
}
|
|
|
|
template <typename Scalar>
|
|
EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(zeta, Scalar)
|
|
zeta(const Scalar& x, const Scalar& q) {
|
|
return EIGEN_MATHFUNC_IMPL(zeta, Scalar)::run(x, q);
|
|
}
|
|
|
|
template <typename Scalar>
|
|
EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(polygamma, Scalar)
|
|
polygamma(const Scalar& n, const Scalar& x) {
|
|
return EIGEN_MATHFUNC_IMPL(polygamma, Scalar)::run(n, x);
|
|
}
|
|
|
|
template <typename Scalar>
|
|
EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(erf, Scalar)
|
|
erf(const Scalar& x) {
|
|
return EIGEN_MATHFUNC_IMPL(erf, Scalar)::run(x);
|
|
}
|
|
|
|
template <typename Scalar>
|
|
EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(erfc, Scalar)
|
|
erfc(const Scalar& x) {
|
|
return EIGEN_MATHFUNC_IMPL(erfc, Scalar)::run(x);
|
|
}
|
|
|
|
template <typename Scalar>
|
|
EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(ndtri, Scalar)
|
|
ndtri(const Scalar& x) {
|
|
return EIGEN_MATHFUNC_IMPL(ndtri, Scalar)::run(x);
|
|
}
|
|
|
|
template <typename Scalar>
|
|
EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(igamma, Scalar)
|
|
igamma(const Scalar& a, const Scalar& x) {
|
|
return EIGEN_MATHFUNC_IMPL(igamma, Scalar)::run(a, x);
|
|
}
|
|
|
|
template <typename Scalar>
|
|
EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(igamma_der_a, Scalar)
|
|
igamma_der_a(const Scalar& a, const Scalar& x) {
|
|
return EIGEN_MATHFUNC_IMPL(igamma_der_a, Scalar)::run(a, x);
|
|
}
|
|
|
|
template <typename Scalar>
|
|
EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(gamma_sample_der_alpha, Scalar)
|
|
gamma_sample_der_alpha(const Scalar& a, const Scalar& x) {
|
|
return EIGEN_MATHFUNC_IMPL(gamma_sample_der_alpha, Scalar)::run(a, x);
|
|
}
|
|
|
|
template <typename Scalar>
|
|
EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(igammac, Scalar)
|
|
igammac(const Scalar& a, const Scalar& x) {
|
|
return EIGEN_MATHFUNC_IMPL(igammac, Scalar)::run(a, x);
|
|
}
|
|
|
|
template <typename Scalar>
|
|
EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(betainc, Scalar)
|
|
betainc(const Scalar& a, const Scalar& b, const Scalar& x) {
|
|
return EIGEN_MATHFUNC_IMPL(betainc, Scalar)::run(a, b, x);
|
|
}
|
|
|
|
template <typename Scalar>
|
|
EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(i0e, Scalar)
|
|
i0e(const Scalar& x) {
|
|
return EIGEN_MATHFUNC_IMPL(i0e, Scalar)::run(x);
|
|
}
|
|
|
|
template <typename Scalar>
|
|
EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(i1e, Scalar)
|
|
i1e(const Scalar& x) {
|
|
return EIGEN_MATHFUNC_IMPL(i1e, Scalar)::run(x);
|
|
}
|
|
|
|
} // end namespace numext
|
|
|
|
|
|
} // end namespace Eigen
|
|
|
|
#endif // EIGEN_SPECIAL_FUNCTIONS_H
|