mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-05-09 22:39:05 +08:00

in particular the addition of a selfadjointView, and the extension of triangularView. The rest is cleaning and does not change/extend the API.
218 lines
8.3 KiB
C++
218 lines
8.3 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2009 Gael Guennebaud <g.gael@free.fr>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#ifndef EIGEN_SELFADJOINTMATRIX_H
|
|
#define EIGEN_SELFADJOINTMATRIX_H
|
|
|
|
/** \class SelfAdjointView
|
|
* \nonstableyet
|
|
*
|
|
* \brief Expression of a selfadjoint matrix from a triangular part of a dense matrix
|
|
*
|
|
* \param MatrixType the type of the dense matrix storing the coefficients
|
|
* \param TriangularPart can be either \c LowerTriangular or \c UpperTriangular
|
|
*
|
|
* This class is an expression of a sefladjoint matrix from a triangular part of a matrix
|
|
* with given dense storage of the coefficients. It is the return type of MatrixBase::selfadjointView()
|
|
* and most of the time this is the only way that it is used.
|
|
*
|
|
* \sa class TriangularBase, MatrixBase::selfAdjointView()
|
|
*/
|
|
template<typename MatrixType, unsigned int TriangularPart>
|
|
struct ei_traits<SelfAdjointView<MatrixType, TriangularPart> > : ei_traits<MatrixType>
|
|
{
|
|
typedef typename ei_nested<MatrixType>::type MatrixTypeNested;
|
|
typedef typename ei_unref<MatrixTypeNested>::type _MatrixTypeNested;
|
|
typedef MatrixType ExpressionType;
|
|
enum {
|
|
Mode = TriangularPart | SelfAdjointBit,
|
|
Flags = _MatrixTypeNested::Flags & (HereditaryBits)
|
|
& (~(PacketAccessBit | DirectAccessBit | LinearAccessBit)), // FIXME these flags should be preserved
|
|
CoeffReadCost = _MatrixTypeNested::CoeffReadCost
|
|
};
|
|
};
|
|
|
|
template <typename Lhs, int LhsMode, bool LhsIsVector,
|
|
typename Rhs, int RhsMode, bool RhsIsVector>
|
|
struct SelfadjointProductMatrix;
|
|
|
|
// FIXME could also be called SelfAdjointWrapper to be consistent with DiagonalWrapper ??
|
|
template<typename MatrixType, unsigned int UpLo> class SelfAdjointView
|
|
: public TriangularBase<SelfAdjointView<MatrixType, UpLo> >
|
|
{
|
|
public:
|
|
|
|
typedef TriangularBase<SelfAdjointView> Base;
|
|
typedef typename ei_traits<SelfAdjointView>::Scalar Scalar;
|
|
enum {
|
|
Mode = ei_traits<SelfAdjointView>::Mode
|
|
};
|
|
typedef typename MatrixType::PlainMatrixType PlainMatrixType;
|
|
|
|
inline SelfAdjointView(const MatrixType& matrix) : m_matrix(matrix)
|
|
{ ei_assert(ei_are_flags_consistent<Mode>::ret); }
|
|
|
|
inline int rows() const { return m_matrix.rows(); }
|
|
inline int cols() const { return m_matrix.cols(); }
|
|
inline int stride() const { return m_matrix.stride(); }
|
|
|
|
/** \sa MatrixBase::coeff()
|
|
* \warning the coordinates must fit into the referenced triangular part
|
|
*/
|
|
inline Scalar coeff(int row, int col) const
|
|
{
|
|
Base::check_coordinates_internal(row, col);
|
|
return m_matrix.coeff(row, col);
|
|
}
|
|
|
|
/** \sa MatrixBase::coeffRef()
|
|
* \warning the coordinates must fit into the referenced triangular part
|
|
*/
|
|
inline Scalar& coeffRef(int row, int col)
|
|
{
|
|
Base::check_coordinates_internal(row, col);
|
|
return m_matrix.const_cast_derived().coeffRef(row, col);
|
|
}
|
|
|
|
/** \internal */
|
|
const MatrixType& _expression() const { return m_matrix; }
|
|
|
|
/** Efficient self-adjoint matrix times vector/matrix product */
|
|
template<typename OtherDerived>
|
|
SelfadjointProductMatrix<MatrixType,Mode,false,OtherDerived,0,OtherDerived::IsVectorAtCompileTime>
|
|
operator*(const MatrixBase<OtherDerived>& rhs) const
|
|
{
|
|
return SelfadjointProductMatrix
|
|
<MatrixType,Mode,false,OtherDerived,0,OtherDerived::IsVectorAtCompileTime>
|
|
(m_matrix, rhs.derived());
|
|
}
|
|
|
|
/** Efficient vector/matrix times self-adjoint matrix product */
|
|
template<typename OtherDerived> friend
|
|
SelfadjointProductMatrix<OtherDerived,0,OtherDerived::IsVectorAtCompileTime,MatrixType,Mode,false>
|
|
operator*(const MatrixBase<OtherDerived>& lhs, const SelfAdjointView& rhs)
|
|
{
|
|
return SelfadjointProductMatrix
|
|
<OtherDerived,0,OtherDerived::IsVectorAtCompileTime,MatrixType,Mode,false>
|
|
(lhs.derived(),rhs.m_matrix);
|
|
}
|
|
|
|
/** Perform a symmetric rank 2 update of the selfadjoint matrix \c *this:
|
|
* \f$ this = this + \alpha ( u v^* + v u^*) \f$
|
|
* \returns a reference to \c *this
|
|
*
|
|
* The vectors \a u and \c v \b must be column vectors, however they can be
|
|
* a adjoint expression without any overhead. Only the meaningful triangular
|
|
* part of the matrix is updated, the rest is left unchanged.
|
|
*
|
|
* \sa rankUpdate(const MatrixBase<DerivedU>&, Scalar)
|
|
*/
|
|
template<typename DerivedU, typename DerivedV>
|
|
SelfAdjointView& rankUpdate(const MatrixBase<DerivedU>& u, const MatrixBase<DerivedV>& v, Scalar alpha = Scalar(1));
|
|
|
|
/** Perform a symmetric rank K update of the selfadjoint matrix \c *this:
|
|
* \f$ this = this + \alpha ( u u^* ) \f$ where \a u is a vector or matrix.
|
|
*
|
|
* \returns a reference to \c *this
|
|
*
|
|
* Note that to perform \f$ this = this + \alpha ( u^* u ) \f$ you can simply
|
|
* call this function with u.adjoint().
|
|
*
|
|
* \sa rankUpdate(const MatrixBase<DerivedU>&, const MatrixBase<DerivedV>&, Scalar)
|
|
*/
|
|
template<typename DerivedU>
|
|
SelfAdjointView& rankUpdate(const MatrixBase<DerivedU>& u, Scalar alpha = Scalar(1));
|
|
|
|
/////////// Cholesky module ///////////
|
|
|
|
const LLT<PlainMatrixType, UpLo> llt() const;
|
|
const LDLT<PlainMatrixType> ldlt() const;
|
|
|
|
protected:
|
|
|
|
const typename MatrixType::Nested m_matrix;
|
|
};
|
|
|
|
|
|
// template<typename OtherDerived, typename MatrixType, unsigned int UpLo>
|
|
// ei_selfadjoint_matrix_product_returntype<OtherDerived,SelfAdjointView<MatrixType,UpLo> >
|
|
// operator*(const MatrixBase<OtherDerived>& lhs, const SelfAdjointView<MatrixType,UpLo>& rhs)
|
|
// {
|
|
// return ei_matrix_selfadjoint_product_returntype<OtherDerived,SelfAdjointView<MatrixType,UpLo> >(lhs.derived(),rhs);
|
|
// }
|
|
|
|
template<typename Derived1, typename Derived2, int UnrollCount, bool ClearOpposite>
|
|
struct ei_triangular_assignment_selector<Derived1, Derived2, SelfAdjoint, UnrollCount, ClearOpposite>
|
|
{
|
|
enum {
|
|
col = (UnrollCount-1) / Derived1::RowsAtCompileTime,
|
|
row = (UnrollCount-1) % Derived1::RowsAtCompileTime
|
|
};
|
|
|
|
inline static void run(Derived1 &dst, const Derived2 &src)
|
|
{
|
|
ei_triangular_assignment_selector<Derived1, Derived2, SelfAdjoint, UnrollCount-1, ClearOpposite>::run(dst, src);
|
|
|
|
if(row == col)
|
|
dst.coeffRef(row, col) = ei_real(src.coeff(row, col));
|
|
else if(row < col)
|
|
dst.coeffRef(col, row) = ei_conj(dst.coeffRef(row, col) = src.coeff(row, col));
|
|
}
|
|
};
|
|
|
|
// selfadjoint to dense matrix
|
|
template<typename Derived1, typename Derived2, bool ClearOpposite>
|
|
struct ei_triangular_assignment_selector<Derived1, Derived2, SelfAdjoint, Dynamic, ClearOpposite>
|
|
{
|
|
inline static void run(Derived1 &dst, const Derived2 &src)
|
|
{
|
|
for(int j = 0; j < dst.cols(); ++j)
|
|
{
|
|
for(int i = 0; i < j; ++i)
|
|
dst.coeffRef(j, i) = ei_conj(dst.coeffRef(i, j) = src.coeff(i, j));
|
|
dst.coeffRef(j, j) = ei_real(src.coeff(j, j));
|
|
}
|
|
}
|
|
};
|
|
|
|
/***************************************************************************
|
|
* Implementation of MatrixBase methods
|
|
***************************************************************************/
|
|
|
|
template<typename Derived>
|
|
template<unsigned int UpLo>
|
|
const SelfAdjointView<Derived, UpLo> MatrixBase<Derived>::selfadjointView() const
|
|
{
|
|
return derived();
|
|
}
|
|
|
|
template<typename Derived>
|
|
template<unsigned int UpLo>
|
|
SelfAdjointView<Derived, UpLo> MatrixBase<Derived>::selfadjointView()
|
|
{
|
|
return derived();
|
|
}
|
|
|
|
#endif // EIGEN_SELFADJOINTMATRIX_H
|