eigen/Eigen/src/SparseLU/SparseLU.h
2012-07-10 19:18:50 +02:00

691 lines
24 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_SPARSE_LU
#define EIGEN_SPARSE_LU
namespace Eigen {
// Data structure needed by all routines
#include "SparseLU_Structs.h"
#include "SparseLU_Matrix.h"
/**
* \ingroup SparseLU_Module
* \brief Sparse supernodal LU factorization for general matrices
*
* This class implements the supernodal LU factorization for general matrices.
*
* \tparam _MatrixType The type of the sparse matrix. It must be a column-major SparseMatrix<>
*/
template <typename _MatrixType, typename _OrderingType>
class SparseLU
{
public:
typedef _MatrixType MatrixType;
typedef _OrderingType OrderingType;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef typename MatrixType::Index Index;
typedef SparseMatrix<Scalar,ColMajor,Index> NCMatrix;
typedef SuperNodalMatrix<Scalar, Index> SCMatrix;
typedef Matrix<Scalar,Dynamic,1> ScalarVector;
typedef Matrix<Index,Dynamic,1> IndexVector;
typedef PermutationMatrix<Dynamic, Dynamic, Index> PermutationType;
public:
SparseLU():m_isInitialized(true),m_Ustore(0,0,0,0,0,0),m_symmetricmode(false),m_diagpivotthresh(1.0)
{
initperfvalues();
}
SparseLU(const MatrixType& matrix):m_isInitialized(true),m_Ustore(0,0,0,0,0,0),m_symmetricmode(false),m_diagpivotthresh(1.0)
{
initperfvalues();
compute(matrix);
}
~SparseLU()
{
// Free all explicit dynamic pointers
}
void analyzePattern (const MatrixType& matrix);
void factorize (const MatrixType& matrix);
/**
* Compute the symbolic and numeric factorization of the input sparse matrix.
* The input matrix should be in column-major storage.
*/
void compute (const MatrixType& matrix)
{
// Analyze
analyzePattern(matrix);
//Factorize
factorize(matrix);
}
inline Index rows() const { return m_mat.rows(); }
inline Index cols() const { return m_mat.cols(); }
/** Indicate that the pattern of the input matrix is symmetric */
void isSymmetric(bool sym)
{
m_symmetricmode = sym;
}
/** Set the threshold used for a diagonal entry to be an acceptable pivot. */
void diagPivotThresh(RealScalar thresh)
{
m_diagpivotthresh = thresh;
}
/** \returns the solution X of \f$ A X = B \f$ using the current decomposition of A.
*
* \sa compute()
*/
// template<typename Rhs>
// inline const solve_retval<SparseLU, Rhs> solve(const MatrixBase<Rhs>& B) const
// {
// eigen_assert(m_factorizationIsOk && "SparseLU is not initialized.");
// eigen_assert(rows()==B.rows()
// && "SparseLU::solve(): invalid number of rows of the right hand side matrix B");
// return solve_retval<SparseLU, Rhs>(*this, B.derived());
// }
/** \brief Reports whether previous computation was successful.
*
* \returns \c Success if computation was succesful,
* \c NumericalIssue if the PaStiX reports a problem
* \c InvalidInput if the input matrix is invalid
*
* \sa iparm()
*/
ComputationInfo info() const
{
eigen_assert(m_isInitialized && "Decomposition is not initialized.");
return m_info;
}
template<typename Rhs, typename Dest>
bool _solve(const MatrixBase<Rhs> &B, MatrixBase<Dest> &_X) const
{
Dest& X(_X.derived());
eigen_assert(m_factorizationIsOk && "The matrix should be factorized first");
EIGEN_STATIC_ASSERT((Dest::Flags&RowMajorBit)==0,
THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES);
X = B; /* on return, X is overwritten by the computed solution */
int nrhs = B.cols();
// Permute the right hand side to form Pr*B
X = m_perm_r * X;
// Forward solve PLy = Pb;
Index n = B.rows();
Index fsupc; // First column of the current supernode
Index istart; // Pointer index to the subscript of the current column
Index nsupr; // Number of rows in the current supernode
Index nsupc; // Number of columns in the current supernode
Index nrow; // Number of rows in the non-diagonal part of the supernode
Index luptr; // Pointer index to the current nonzero value
Index iptr; // row index pointer iterator
Index irow; //Current index row
const Scalar * Lval = m_Lstore.valuePtr(); // Nonzero values
Matrix<Scalar,Dynamic,Dynamic> work(n, nrhs); // working vector
work.setZero();
int j, k, i,jcol;
for (k = 0; k <= m_Lstore.nsuper(); k ++)
{
fsupc = m_Lstore.supToCol()[k];
istart = m_Lstore.rowIndexPtr()[fsupc];
nsupr = m_Lstore.rowIndexPtr()[fsupc+1] - istart;
nsupc = m_Lstore.supToCol()[k+1] - fsupc;
nrow = nsupr - nsupc;
luptr = m_Lstore.colIndexPtr()[fsupc];
if (nsupc == 1 )
{
for (j = 0; j < nrhs; j++)
{
for (iptr = istart+1; iptr < m_Lstore.rowIndexPtr()[fsupc+1]; iptr++)
{
irow = m_Lstore.rowIndex()[iptr];
++luptr;
X(irow, j) -= X(fsupc, j) * Lval[luptr];
}
}
}
else
{
// The supernode has more than one column
// Triangular solve
Map<const Matrix<Scalar,Dynamic,Dynamic>, 0, OuterStride<> > A( &(Lval[luptr]), nsupc, nsupc, OuterStride<>(nsupr) );
Map< Matrix<Scalar,Dynamic,Dynamic>, 0, OuterStride<> > U (&(X.data()[fsupc]), nsupc, nrhs, OuterStride<>(X.rows()) );
U = A.template triangularView<UnitLower>().solve(U);
// Matrix-vector product
new (&A) Map<const Matrix<Scalar,Dynamic,Dynamic>, 0, OuterStride<> > ( &(Lval[luptr+nsupc]), nrow, nsupc, OuterStride<>(nsupr) );
work.block(0, 0, nrow, nrhs) = A * U;
//Begin Scatter
for (j = 0; j < nrhs; j++)
{
iptr = istart + nsupc;
for (i = 0; i < nrow; i++)
{
irow = m_Lstore.rowIndex()[iptr];
X(irow, j) -= work(i, j); // Scatter operation
work(i, j) = Scalar(0);
iptr++;
}
}
}
} // end for all supernodes
// Back solve Ux = y
for (k = m_Lstore.nsuper(); k >= 0; k--)
{
fsupc = m_Lstore.supToCol()[k];
istart = m_Lstore.rowIndexPtr()[fsupc];
nsupr = m_Lstore.rowIndexPtr()[fsupc+1] - istart;
nsupc = m_Lstore.supToCol()[k+1] - fsupc;
luptr = m_Lstore.colIndexPtr()[fsupc];
if (nsupc == 1)
{
for (j = 0; j < nrhs; j++)
{
X(fsupc, j) /= Lval[luptr];
}
}
else
{
Map<const Matrix<Scalar,Dynamic,Dynamic>, 0, OuterStride<> > A( &(Lval[luptr]), nsupc, nsupc, OuterStride<>(nsupr) );
Map< Matrix<Scalar,Dynamic,Dynamic>, 0, OuterStride<> > U (&(X.data()[fsupc]), nsupc, nrhs, OuterStride<>(X.rows()) );
U = A.template triangularView<Upper>().solve(U);
}
for (j = 0; j < nrhs; ++j)
{
for (jcol = fsupc; jcol < fsupc + nsupc; jcol++)
{
for (i = m_Ustore.outerIndexPtr()[jcol]; i < m_Ustore.outerIndexPtr()[jcol+1]; i++)
{
irow = m_Ustore.innerIndexPtr()[i];
X(irow, j) -= X(jcol, j) * m_Ustore.valuePtr()[i];
}
}
}
} // End For U-solve
// Permute back the solution
X = m_perm_c.inverse() * X;
return true;
}
protected:
// Functions
void initperfvalues()
{
m_panel_size = 12;
m_relax = 6;
m_maxsuper = 100;
m_rowblk = 200;
m_colblk = 60;
m_fillfactor = 20;
}
// Variables
mutable ComputationInfo m_info;
bool m_isInitialized;
bool m_factorizationIsOk;
bool m_analysisIsOk;
NCMatrix m_mat; // The input (permuted ) matrix
SCMatrix m_Lstore; // The lower triangular matrix (supernodal)
MappedSparseMatrix<Scalar> m_Ustore; // The upper triangular matrix
PermutationType m_perm_c; // Column permutation
PermutationType m_perm_r ; // Row permutation
IndexVector m_etree; // Column elimination tree
LU_GlobalLU_t<IndexVector, ScalarVector> m_glu; // persistent data to facilitate multiple factors
// FIXME All fields of this struct can be defined separately as class members
// SuperLU/SparseLU options
bool m_symmetricmode;
// values for performance
int m_panel_size; // a panel consists of at most <panel_size> consecutive columns
int m_relax; // To control degree of relaxing supernodes. If the number of nodes (columns)
// in a subtree of the elimination tree is less than relax, this subtree is considered
// as one supernode regardless of the row structures of those columns
int m_maxsuper; // The maximum size for a supernode in complete LU
int m_rowblk; // The minimum row dimension for 2-D blocking to be used;
int m_colblk; // The minimum column dimension for 2-D blocking to be used;
int m_fillfactor; // The estimated fills factors for L and U, compared with A
RealScalar m_diagpivotthresh; // Specifies the threshold used for a diagonal entry to be an acceptable pivot
int m_nnzL, m_nnzU; // Nonzeros in L and U factors
private:
// Copy constructor
SparseLU (SparseLU& ) {}
}; // End class SparseLU
// Functions needed by the anaysis phase
#include "SparseLU_Coletree.h"
/**
* Compute the column permutation to minimize the fill-in (file amd.c )
*
* - Apply this permutation to the input matrix -
*
* - Compute the column elimination tree on the permuted matrix (file Eigen_Coletree.h)
*
* - Postorder the elimination tree and the column permutation (file Eigen_Coletree.h)
*
*/
template <typename MatrixType, typename OrderingType>
void SparseLU<MatrixType, OrderingType>::analyzePattern(const MatrixType& mat)
{
//TODO It is possible as in SuperLU to compute row and columns scaling vectors to equilibrate the matrix mat.
// Compute the fill-reducing ordering
// TODO Currently, the only available ordering method is AMD.
OrderingType ord;
ord(mat,m_perm_c);
//FIXME Check the right semantic behind m_perm_c
// that is, column j of mat goes to column m_perm_c(j) of mat * m_perm_c;
//DEBUG : Set the natural ordering
for (int i = 0; i < mat.cols(); i++)
m_perm_c.indices()(i) = i;
// Apply the permutation to the column of the input matrix
m_mat = mat * m_perm_c.inverse();
// Compute the column elimination tree of the permuted matrix
if (m_etree.size() == 0) m_etree.resize(m_mat.cols());
LU_sp_coletree(m_mat, m_etree);
// In symmetric mode, do not do postorder here
if (!m_symmetricmode) {
IndexVector post, iwork;
// Post order etree
LU_TreePostorder(m_mat.cols(), m_etree, post);
// Renumber etree in postorder
int m = m_mat.cols();
iwork.resize(m+1);
for (int i = 0; i < m; ++i) iwork(post(i)) = post(m_etree(i));
m_etree = iwork;
// Postmultiply A*Pc by post, i.e reorder the matrix according to the postorder of the etree
PermutationType post_perm(m); //FIXME Use vector constructor
for (int i = 0; i < m; i++)
post_perm.indices()(i) = post(i);
// m_mat = m_mat * post_perm.inverse(); // FIXME This should surely be in factorize()
// Composition of the two permutations
m_perm_c = m_perm_c * post_perm;
} // end postordering
m_analysisIsOk = true;
}
// Functions needed by the numerical factorization phase
#include "SparseLU_Memory.h"
#include "SparseLU_heap_relax_snode.h"
#include "SparseLU_relax_snode.h"
#include "SparseLU_snode_dfs.h"
#include "SparseLU_snode_bmod.h"
#include "SparseLU_pivotL.h"
#include "SparseLU_panel_dfs.h"
#include "SparseLU_panel_bmod.h"
#include "SparseLU_column_dfs.h"
#include "SparseLU_column_bmod.h"
#include "SparseLU_copy_to_ucol.h"
#include "SparseLU_pruneL.h"
#include "SparseLU_Utils.h"
/**
* - Numerical factorization
* - Interleaved with the symbolic factorization
* \tparam MatrixType The type of the matrix, it should be a column-major sparse matrix
* \return info where
* : successful exit
* = 0: successful exit
* > 0: if info = i, and i is
* <= A->ncol: U(i,i) is exactly zero. The factorization has
* been completed, but the factor U is exactly singular,
* and division by zero will occur if it is used to solve a
* system of equations.
* > A->ncol: number of bytes allocated when memory allocation
* failure occurred, plus A->ncol. If lwork = -1, it is
* the estimated amount of space needed, plus A->ncol.
*/
template <typename MatrixType, typename OrderingType>
void SparseLU<MatrixType, OrderingType>::factorize(const MatrixType& matrix)
{
eigen_assert(m_analysisIsOk && "analyzePattern() should be called first");
eigen_assert((matrix.rows() == matrix.cols()) && "Only for squared matrices");
typedef typename IndexVector::Scalar Index;
// Apply the column permutation computed in analyzepattern()
m_mat = matrix * m_perm_c.inverse();
m_mat.makeCompressed();
// DEBUG ... Watch matrix permutation
const int *asub_in = matrix.innerIndexPtr();
const int *colptr_in = matrix.outerIndexPtr();
int * asub = m_mat.innerIndexPtr();
int * colptr = m_mat.outerIndexPtr();
int m = m_mat.rows();
int n = m_mat.cols();
int nnz = m_mat.nonZeros();
int maxpanel = m_panel_size * m;
// Allocate storage common to the factor routines
int lwork = 0;
int info = LUMemInit(m, n, nnz, lwork, m_fillfactor, m_panel_size, m_glu);
if (info)
{
std::cerr << "UNABLE TO ALLOCATE WORKING MEMORY\n\n" ;
m_factorizationIsOk = false;
return ;
}
// Set up pointers for integer working arrays
// int idx = 0;
// VectorBlock<IndexVector> segrep(iwork, idx, m);
// idx += m;
// VectorBlock<IndexVector> parent(iwork, idx, m);
// idx += m;
// VectorBlock<IndexVector> xplore(iwork, idx, m);
// idx += m;
// VectorBlock<IndexVector> repfnz(iwork, idx, maxpanel);
// idx += maxpanel;
// VectorBlock<IndexVector> panel_lsub(iwork, idx, maxpanel);
// idx += maxpanel;
// VectorBlock<IndexVector> xprune(iwork, idx, n);
// idx += n;
// VectorBlock<IndexVector> marker(iwork, idx, m * LU_NO_MARKER);
// Set up pointers for integer working arrays
IndexVector segrep(m);
IndexVector parent(m);
IndexVector xplore(m);
IndexVector repfnz(maxpanel);
IndexVector panel_lsub(maxpanel);
IndexVector xprune(n); xprune.setZero();
IndexVector marker(m*LU_NO_MARKER);
repfnz.setConstant(-1);
panel_lsub.setConstant(-1);
// Set up pointers for scalar working arrays
ScalarVector dense;
dense.setZero(maxpanel);
ScalarVector tempv;
tempv.setZero(LU_NUM_TEMPV(m, m_panel_size, m_maxsuper, m_rowblk) );
// Setup Permutation vectors
// Compute the inverse of perm_c
// PermutationType iperm_c (m_perm_c.inverse() );
PermutationType iperm_c (m_perm_c);
// Identify initial relaxed snodes
IndexVector relax_end(n);
if ( m_symmetricmode == true )
LU_heap_relax_snode<IndexVector>(n, m_etree, m_relax, marker, relax_end);
else
LU_relax_snode<IndexVector>(n, m_etree, m_relax, marker, relax_end);
//DEBUG
// std::cout<< "relax_end " <<relax_end.transpose() << std::endl;
m_perm_r.resize(m);
m_perm_r.indices().setConstant(-1); //FIXME
marker.setConstant(-1);
IndexVector& xsup = m_glu.xsup;
IndexVector& supno = m_glu.supno;
IndexVector& xlsub = m_glu.xlsub;
IndexVector& xlusup = m_glu.xlusup;
IndexVector& xusub = m_glu.xusub;
ScalarVector& lusup = m_glu.lusup;
Index& nzlumax = m_glu.nzlumax;
supno(0) = IND_EMPTY;
xsup(0) = xlsub(0) = xusub(0) = xlusup(0) = Index(0);
// Work on one 'panel' at a time. A panel is one of the following :
// (a) a relaxed supernode at the bottom of the etree, or
// (b) panel_size contiguous columns, <panel_size> defined by the user
int jcol,kcol;
IndexVector panel_histo(n);
Index nextu, nextlu, jsupno, fsupc, new_next;
Index pivrow; // Pivotal row number in the original row matrix
int nseg1; // Number of segments in U-column above panel row jcol
int nseg; // Number of segments in each U-column
int irep, icol;
int i, k, jj;
for (jcol = 0; jcol < n; )
{
if (relax_end(jcol) != IND_EMPTY)
{ // Starting a relaxed node from jcol
kcol = relax_end(jcol); // End index of the relaxed snode
// Factorize the relaxed supernode(jcol:kcol)
// First, determine the union of the row structure of the snode
info = LU_snode_dfs(jcol, kcol, m_mat.innerIndexPtr(), m_mat.outerIndexPtr(), xprune, marker, m_glu);
if ( info )
{
std::cerr << "MEMORY ALLOCATION FAILED IN SNODE_DFS() \n";
m_info = NumericalIssue;
m_factorizationIsOk = false;
return;
}
nextu = xusub(jcol); //starting location of column jcol in ucol
nextlu = xlusup(jcol); //Starting location of column jcol in lusup (rectangular supernodes)
jsupno = supno(jcol); // Supernode number which column jcol belongs to
fsupc = xsup(jsupno); //First column number of the current supernode
new_next = nextlu + (xlsub(fsupc+1)-xlsub(fsupc)) * (kcol - jcol + 1);
int mem;
while (new_next > nzlumax )
{
mem = LUMemXpand(lusup, nzlumax, nextlu, LUSUP, m_glu.num_expansions);
if (mem)
{
std::cerr << "MEMORY ALLOCATION FAILED FOR L FACTOR \n";
m_factorizationIsOk = false;
return;
}
}
// Now, left-looking factorize each column within the snode
for (icol = jcol; icol<=kcol; icol++){
xusub(icol+1) = nextu;
// Scatter into SPA dense(*)
for (typename MatrixType::InnerIterator it(m_mat, icol); it; ++it)
dense(it.row()) = it.value();
// Numeric update within the snode
LU_snode_bmod(icol, fsupc, dense, m_glu);
// Eliminate the current column
info = LU_pivotL(icol, m_diagpivotthresh, m_perm_r.indices(), iperm_c.indices(), pivrow, m_glu);
eigen_assert(info==0 && " SINGULAR MATRIX");
if ( info )
{
m_info = NumericalIssue;
std::cerr<< "THE MATRIX IS STRUCTURALLY SINGULAR ... ZERO COLUMN AT " << info <<std::endl;
m_factorizationIsOk = false;
return;
}
}
jcol = icol; // The last column te be eliminated
}
else
{ // Work on one panel of panel_size columns
// Adjust panel size so that a panel won't overlap with the next relaxed snode.
int panel_size = m_panel_size; // upper bound on panel width
for (k = jcol + 1; k < std::min(jcol+panel_size, n); k++)
{
if (relax_end(k) != IND_EMPTY)
{
panel_size = k - jcol;
break;
}
}
if (k == n)
panel_size = n - jcol;
// Symbolic outer factorization on a panel of columns
LU_panel_dfs(m, panel_size, jcol, m_mat, m_perm_r.indices(), nseg1, dense, panel_lsub, segrep, repfnz, xprune, marker, parent, xplore, m_glu);
// Numeric sup-panel updates in topological order
LU_panel_bmod(m, panel_size, jcol, nseg1, dense, tempv, segrep, repfnz, m_glu);
// Sparse LU within the panel, and below the panel diagonal
for ( jj = jcol; jj< jcol + panel_size; jj++)
{
k = (jj - jcol) * m; // Column index for w-wide arrays
nseg = nseg1; // begin after all the panel segments
//Depth-first-search for the current column
VectorBlock<IndexVector> panel_lsubk(panel_lsub, k, m);
VectorBlock<IndexVector> repfnz_k(repfnz, k, m);
info = LU_column_dfs(m, jj, m_perm_r.indices(), m_maxsuper, nseg, panel_lsubk, segrep, repfnz_k, xprune, marker, parent, xplore, m_glu);
if ( info )
{
std::cerr << "UNABLE TO EXPAND MEMORY IN COLUMN_DFS() \n";
m_info = NumericalIssue;
m_factorizationIsOk = false;
return;
}
// Numeric updates to this column
VectorBlock<ScalarVector> dense_k(dense, k, m);
VectorBlock<IndexVector> segrep_k(segrep, nseg1, m-nseg1);
info = LU_column_bmod(jj, (nseg - nseg1), dense_k, tempv, segrep_k, repfnz_k, jcol, m_glu);
if ( info )
{
std::cerr << "UNABLE TO EXPAND MEMORY IN COLUMN_BMOD() \n";
m_info = NumericalIssue;
m_factorizationIsOk = false;
return;
}
// Copy the U-segments to ucol(*)
info = LU_copy_to_ucol(jj, nseg, segrep, repfnz_k ,m_perm_r.indices(), dense_k, m_glu);
if ( info )
{
std::cerr << "UNABLE TO EXPAND MEMORY IN COPY_TO_UCOL() \n";
m_info = NumericalIssue;
m_factorizationIsOk = false;
return;
}
// Form the L-segment
info = LU_pivotL(jj, m_diagpivotthresh, m_perm_r.indices(), iperm_c.indices(), pivrow, m_glu);
eigen_assert(info==0 && " SINGULAR MATRIX");
if ( info )
{
std::cerr<< "THE MATRIX IS STRUCTURALLY SINGULAR ... ZERO COLUMN AT " << info <<std::endl;
m_info = NumericalIssue;
m_factorizationIsOk = false;
return;
}
// Prune columns (0:jj-1) using column jj
LU_pruneL(jj, m_perm_r.indices(), pivrow, nseg, segrep, repfnz_k, xprune, m_glu);
// Reset repfnz for this column
for (i = 0; i < nseg; i++)
{
irep = segrep(i);
repfnz_k(irep) = IND_EMPTY;
}
} // end SparseLU within the panel
jcol += panel_size; // Move to the next panel
} // end else
} // end for -- end elimination
// Count the number of nonzeros in factors
LU_countnz(n, m_nnzL, m_nnzU, m_glu);
// Apply permutation to the L subscripts
LU_fixupL/*<IndexVector, ScalarVector>*/(n, m_perm_r.indices(), m_glu);
// Create supernode matrix L
m_Lstore.setInfos(m, n, m_glu.lusup, m_glu.xlusup, m_glu.lsub, m_glu.xlsub, m_glu.supno, m_glu.xsup);
// Create the column major upper sparse matrix U;
// it is assumed here that MatrixType = SparseMatrix<Scalar,ColumnMajor>
new (&m_Ustore) MappedSparseMatrix<Scalar> ( m, n, m_nnzU, m_glu.xusub.data(), m_glu.usub.data(), m_glu.ucol.data() );
//this.m_Ustore = m_Ustore; //FIXME Is it necessary
m_info = Success;
m_factorizationIsOk = true;
}
/*namespace internal {
template<typename _MatrixType, typename Derived, typename Rhs>
struct solve_retval<SparseLU<_MatrixType,Derived>, Rhs>
: solve_retval_base<SparseLU<_MatrixType,Derived>, Rhs>
{
typedef SparseLU<_MatrixType,Derived> Dec;
EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
template<typename Dest> void evalTo(Dest& dst) const
{
dec().derived()._solve(rhs(),dst);
}
};
}*/ // end namespace internal
} // End namespace Eigen
#endif