mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-05-01 16:24:28 +08:00
198 lines
7.3 KiB
C++
198 lines
7.3 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#ifndef EIGEN_SPARSEPRODUCT_H
|
|
#define EIGEN_SPARSEPRODUCT_H
|
|
|
|
template<typename Lhs, typename Rhs>
|
|
struct SparseSparseProductReturnType
|
|
{
|
|
typedef typename internal::traits<Lhs>::Scalar Scalar;
|
|
enum {
|
|
LhsRowMajor = internal::traits<Lhs>::Flags & RowMajorBit,
|
|
RhsRowMajor = internal::traits<Rhs>::Flags & RowMajorBit,
|
|
TransposeRhs = (!LhsRowMajor) && RhsRowMajor,
|
|
TransposeLhs = LhsRowMajor && (!RhsRowMajor)
|
|
};
|
|
|
|
typedef typename internal::conditional<TransposeLhs,
|
|
SparseMatrix<Scalar,0>,
|
|
const typename internal::nested<Lhs,Rhs::RowsAtCompileTime>::type>::type LhsNested;
|
|
|
|
typedef typename internal::conditional<TransposeRhs,
|
|
SparseMatrix<Scalar,0>,
|
|
const typename internal::nested<Rhs,Lhs::RowsAtCompileTime>::type>::type RhsNested;
|
|
|
|
typedef SparseSparseProduct<LhsNested, RhsNested> Type;
|
|
};
|
|
|
|
namespace internal {
|
|
template<typename LhsNested, typename RhsNested>
|
|
struct traits<SparseSparseProduct<LhsNested, RhsNested> >
|
|
{
|
|
typedef MatrixXpr XprKind;
|
|
// clean the nested types:
|
|
typedef typename remove_all<LhsNested>::type _LhsNested;
|
|
typedef typename remove_all<RhsNested>::type _RhsNested;
|
|
typedef typename _LhsNested::Scalar Scalar;
|
|
typedef typename promote_index_type<typename traits<_LhsNested>::Index,
|
|
typename traits<_RhsNested>::Index>::type Index;
|
|
|
|
enum {
|
|
LhsCoeffReadCost = _LhsNested::CoeffReadCost,
|
|
RhsCoeffReadCost = _RhsNested::CoeffReadCost,
|
|
LhsFlags = _LhsNested::Flags,
|
|
RhsFlags = _RhsNested::Flags,
|
|
|
|
RowsAtCompileTime = _LhsNested::RowsAtCompileTime,
|
|
ColsAtCompileTime = _RhsNested::ColsAtCompileTime,
|
|
MaxRowsAtCompileTime = _LhsNested::MaxRowsAtCompileTime,
|
|
MaxColsAtCompileTime = _RhsNested::MaxColsAtCompileTime,
|
|
|
|
InnerSize = EIGEN_SIZE_MIN_PREFER_FIXED(_LhsNested::ColsAtCompileTime, _RhsNested::RowsAtCompileTime),
|
|
|
|
EvalToRowMajor = (RhsFlags & LhsFlags & RowMajorBit),
|
|
|
|
RemovedBits = ~(EvalToRowMajor ? 0 : RowMajorBit),
|
|
|
|
Flags = (int(LhsFlags | RhsFlags) & HereditaryBits & RemovedBits)
|
|
| EvalBeforeAssigningBit
|
|
| EvalBeforeNestingBit,
|
|
|
|
CoeffReadCost = Dynamic
|
|
};
|
|
|
|
typedef Sparse StorageKind;
|
|
};
|
|
|
|
} // end namespace internal
|
|
|
|
template<typename LhsNested, typename RhsNested>
|
|
class SparseSparseProduct : internal::no_assignment_operator,
|
|
public SparseMatrixBase<SparseSparseProduct<LhsNested, RhsNested> >
|
|
{
|
|
public:
|
|
|
|
typedef SparseMatrixBase<SparseSparseProduct> Base;
|
|
EIGEN_DENSE_PUBLIC_INTERFACE(SparseSparseProduct)
|
|
|
|
private:
|
|
|
|
typedef typename internal::traits<SparseSparseProduct>::_LhsNested _LhsNested;
|
|
typedef typename internal::traits<SparseSparseProduct>::_RhsNested _RhsNested;
|
|
|
|
public:
|
|
|
|
template<typename Lhs, typename Rhs>
|
|
EIGEN_STRONG_INLINE SparseSparseProduct(const Lhs& lhs, const Rhs& rhs)
|
|
: m_lhs(lhs), m_rhs(rhs), m_tolerance(0), m_conservative(true)
|
|
{
|
|
init();
|
|
}
|
|
|
|
template<typename Lhs, typename Rhs>
|
|
EIGEN_STRONG_INLINE SparseSparseProduct(const Lhs& lhs, const Rhs& rhs, RealScalar tolerance)
|
|
: m_lhs(lhs), m_rhs(rhs), m_tolerance(tolerance), m_conservative(false)
|
|
{
|
|
init();
|
|
}
|
|
|
|
SparseSparseProduct pruned(Scalar reference = 0, RealScalar epsilon = NumTraits<RealScalar>::dummy_precision()) const
|
|
{
|
|
return SparseSparseProduct(m_lhs,m_rhs,internal::abs(reference)*epsilon);
|
|
}
|
|
|
|
template<typename Dest>
|
|
void evalTo(Dest& result) const
|
|
{
|
|
if(m_conservative)
|
|
internal::conservative_sparse_sparse_product_selector<_LhsNested, _RhsNested, Dest>::run(lhs(),rhs(),result);
|
|
else
|
|
internal::sparse_sparse_product_with_pruning_selector<_LhsNested, _RhsNested, Dest>::run(lhs(),rhs(),result,m_tolerance);
|
|
}
|
|
|
|
EIGEN_STRONG_INLINE Index rows() const { return m_lhs.rows(); }
|
|
EIGEN_STRONG_INLINE Index cols() const { return m_rhs.cols(); }
|
|
|
|
EIGEN_STRONG_INLINE const _LhsNested& lhs() const { return m_lhs; }
|
|
EIGEN_STRONG_INLINE const _RhsNested& rhs() const { return m_rhs; }
|
|
|
|
protected:
|
|
void init()
|
|
{
|
|
eigen_assert(m_lhs.cols() == m_rhs.rows());
|
|
|
|
enum {
|
|
ProductIsValid = _LhsNested::ColsAtCompileTime==Dynamic
|
|
|| _RhsNested::RowsAtCompileTime==Dynamic
|
|
|| int(_LhsNested::ColsAtCompileTime)==int(_RhsNested::RowsAtCompileTime),
|
|
AreVectors = _LhsNested::IsVectorAtCompileTime && _RhsNested::IsVectorAtCompileTime,
|
|
SameSizes = EIGEN_PREDICATE_SAME_MATRIX_SIZE(_LhsNested,_RhsNested)
|
|
};
|
|
// note to the lost user:
|
|
// * for a dot product use: v1.dot(v2)
|
|
// * for a coeff-wise product use: v1.cwise()*v2
|
|
EIGEN_STATIC_ASSERT(ProductIsValid || !(AreVectors && SameSizes),
|
|
INVALID_VECTOR_VECTOR_PRODUCT__IF_YOU_WANTED_A_DOT_OR_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTIONS)
|
|
EIGEN_STATIC_ASSERT(ProductIsValid || !(SameSizes && !AreVectors),
|
|
INVALID_MATRIX_PRODUCT__IF_YOU_WANTED_A_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTION)
|
|
EIGEN_STATIC_ASSERT(ProductIsValid || SameSizes, INVALID_MATRIX_PRODUCT)
|
|
}
|
|
|
|
LhsNested m_lhs;
|
|
RhsNested m_rhs;
|
|
RealScalar m_tolerance;
|
|
bool m_conservative;
|
|
};
|
|
|
|
// sparse = sparse * sparse
|
|
template<typename Derived>
|
|
template<typename Lhs, typename Rhs>
|
|
inline Derived& SparseMatrixBase<Derived>::operator=(const SparseSparseProduct<Lhs,Rhs>& product)
|
|
{
|
|
product.evalTo(derived());
|
|
return derived();
|
|
}
|
|
|
|
/** \returns an expression of the product of two sparse matrices.
|
|
* By default a conservative product preserving the symbolic non zeros is performed.
|
|
* The automatic pruning of the small values can be achieved by calling the pruned() function
|
|
* in which case a totally different product algorithm is employed:
|
|
* \code
|
|
* C = (A*B).pruned(); // supress numerical zeros (exact)
|
|
* C = (A*B).pruned(ref);
|
|
* C = (A*B).pruned(ref,epsilon);
|
|
* \endcode
|
|
* where \c ref is a meaningful non zero reference value.
|
|
* */
|
|
template<typename Derived>
|
|
template<typename OtherDerived>
|
|
inline const typename SparseSparseProductReturnType<Derived,OtherDerived>::Type
|
|
SparseMatrixBase<Derived>::operator*(const SparseMatrixBase<OtherDerived> &other) const
|
|
{
|
|
return typename SparseSparseProductReturnType<Derived,OtherDerived>::Type(derived(), other.derived());
|
|
}
|
|
|
|
#endif // EIGEN_SPARSEPRODUCT_H
|