mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-04-19 08:09:36 +08:00
573 lines
18 KiB
C++
573 lines
18 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2008-2015 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#ifndef EIGEN_SPARSEVECTOR_H
|
|
#define EIGEN_SPARSEVECTOR_H
|
|
|
|
#include "./InternalHeaderCheck.h"
|
|
|
|
namespace Eigen {
|
|
|
|
/** \ingroup SparseCore_Module
|
|
* \class SparseVector
|
|
*
|
|
* \brief a sparse vector class
|
|
*
|
|
* \tparam Scalar_ the scalar type, i.e. the type of the coefficients
|
|
*
|
|
* See http://www.netlib.org/linalg/html_templates/node91.html for details on the storage scheme.
|
|
*
|
|
* This class can be extended with the help of the plugin mechanism described on the page
|
|
* \ref TopicCustomizing_Plugins by defining the preprocessor symbol \c EIGEN_SPARSEVECTOR_PLUGIN.
|
|
*/
|
|
|
|
namespace internal {
|
|
template<typename Scalar_, int Options_, typename StorageIndex_>
|
|
struct traits<SparseVector<Scalar_, Options_, StorageIndex_> >
|
|
{
|
|
typedef Scalar_ Scalar;
|
|
typedef StorageIndex_ StorageIndex;
|
|
typedef Sparse StorageKind;
|
|
typedef MatrixXpr XprKind;
|
|
enum {
|
|
IsColVector = (Options_ & RowMajorBit) ? 0 : 1,
|
|
|
|
RowsAtCompileTime = IsColVector ? Dynamic : 1,
|
|
ColsAtCompileTime = IsColVector ? 1 : Dynamic,
|
|
MaxRowsAtCompileTime = RowsAtCompileTime,
|
|
MaxColsAtCompileTime = ColsAtCompileTime,
|
|
Flags = Options_ | NestByRefBit | LvalueBit | (IsColVector ? 0 : RowMajorBit) | CompressedAccessBit,
|
|
SupportedAccessPatterns = InnerRandomAccessPattern
|
|
};
|
|
};
|
|
|
|
// Sparse-Vector-Assignment kinds:
|
|
enum {
|
|
SVA_RuntimeSwitch,
|
|
SVA_Inner,
|
|
SVA_Outer
|
|
};
|
|
|
|
template< typename Dest, typename Src,
|
|
int AssignmentKind = !bool(Src::IsVectorAtCompileTime) ? SVA_RuntimeSwitch
|
|
: Src::InnerSizeAtCompileTime==1 ? SVA_Outer
|
|
: SVA_Inner>
|
|
struct sparse_vector_assign_selector;
|
|
|
|
}
|
|
|
|
template<typename Scalar_, int Options_, typename StorageIndex_>
|
|
class SparseVector
|
|
: public SparseCompressedBase<SparseVector<Scalar_, Options_, StorageIndex_> >
|
|
{
|
|
typedef SparseCompressedBase<SparseVector> Base;
|
|
using Base::convert_index;
|
|
public:
|
|
EIGEN_SPARSE_PUBLIC_INTERFACE(SparseVector)
|
|
EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(SparseVector, +=)
|
|
EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(SparseVector, -=)
|
|
|
|
typedef internal::CompressedStorage<Scalar,StorageIndex> Storage;
|
|
enum { IsColVector = internal::traits<SparseVector>::IsColVector };
|
|
|
|
enum {
|
|
Options = Options_
|
|
};
|
|
|
|
EIGEN_STRONG_INLINE Index rows() const { return IsColVector ? m_size : 1; }
|
|
EIGEN_STRONG_INLINE Index cols() const { return IsColVector ? 1 : m_size; }
|
|
EIGEN_STRONG_INLINE Index innerSize() const { return m_size; }
|
|
EIGEN_STRONG_INLINE Index outerSize() const { return 1; }
|
|
|
|
EIGEN_STRONG_INLINE const Scalar* valuePtr() const { return m_data.valuePtr(); }
|
|
EIGEN_STRONG_INLINE Scalar* valuePtr() { return m_data.valuePtr(); }
|
|
|
|
EIGEN_STRONG_INLINE const StorageIndex* innerIndexPtr() const { return m_data.indexPtr(); }
|
|
EIGEN_STRONG_INLINE StorageIndex* innerIndexPtr() { return m_data.indexPtr(); }
|
|
|
|
inline const StorageIndex* outerIndexPtr() const { return 0; }
|
|
inline StorageIndex* outerIndexPtr() { return 0; }
|
|
inline const StorageIndex* innerNonZeroPtr() const { return 0; }
|
|
inline StorageIndex* innerNonZeroPtr() { return 0; }
|
|
|
|
/** \internal */
|
|
inline Storage& data() { return m_data; }
|
|
/** \internal */
|
|
inline const Storage& data() const { return m_data; }
|
|
|
|
inline Scalar coeff(Index row, Index col) const
|
|
{
|
|
eigen_assert(IsColVector ? (col==0 && row>=0 && row<m_size) : (row==0 && col>=0 && col<m_size));
|
|
return coeff(IsColVector ? row : col);
|
|
}
|
|
inline Scalar coeff(Index i) const
|
|
{
|
|
eigen_assert(i>=0 && i<m_size);
|
|
return m_data.at(StorageIndex(i));
|
|
}
|
|
|
|
inline Scalar& coeffRef(Index row, Index col)
|
|
{
|
|
eigen_assert(IsColVector ? (col==0 && row>=0 && row<m_size) : (row==0 && col>=0 && col<m_size));
|
|
return coeffRef(IsColVector ? row : col);
|
|
}
|
|
|
|
/** \returns a reference to the coefficient value at given index \a i
|
|
* This operation involes a log(rho*size) binary search. If the coefficient does not
|
|
* exist yet, then a sorted insertion into a sequential buffer is performed.
|
|
*
|
|
* This insertion might be very costly if the number of nonzeros above \a i is large.
|
|
*/
|
|
inline Scalar& coeffRef(Index i)
|
|
{
|
|
eigen_assert(i>=0 && i<m_size);
|
|
|
|
return m_data.atWithInsertion(StorageIndex(i));
|
|
}
|
|
|
|
public:
|
|
|
|
typedef typename Base::InnerIterator InnerIterator;
|
|
typedef typename Base::ReverseInnerIterator ReverseInnerIterator;
|
|
|
|
inline void setZero() { m_data.clear(); }
|
|
|
|
/** \returns the number of non zero coefficients */
|
|
inline Index nonZeros() const { return m_data.size(); }
|
|
|
|
inline void startVec(Index outer)
|
|
{
|
|
EIGEN_UNUSED_VARIABLE(outer);
|
|
eigen_assert(outer==0);
|
|
}
|
|
|
|
inline Scalar& insertBackByOuterInner(Index outer, Index inner)
|
|
{
|
|
EIGEN_UNUSED_VARIABLE(outer);
|
|
eigen_assert(outer==0);
|
|
return insertBack(inner);
|
|
}
|
|
inline Scalar& insertBack(Index i)
|
|
{
|
|
m_data.append(0, i);
|
|
return m_data.value(m_data.size()-1);
|
|
}
|
|
|
|
Scalar& insertBackByOuterInnerUnordered(Index outer, Index inner)
|
|
{
|
|
EIGEN_UNUSED_VARIABLE(outer);
|
|
eigen_assert(outer==0);
|
|
return insertBackUnordered(inner);
|
|
}
|
|
inline Scalar& insertBackUnordered(Index i)
|
|
{
|
|
m_data.append(0, i);
|
|
return m_data.value(m_data.size()-1);
|
|
}
|
|
|
|
inline Scalar& insert(Index row, Index col)
|
|
{
|
|
eigen_assert(IsColVector ? (col==0 && row>=0 && row<m_size) : (row==0 && col>=0 && col<m_size));
|
|
|
|
Index inner = IsColVector ? row : col;
|
|
Index outer = IsColVector ? col : row;
|
|
EIGEN_ONLY_USED_FOR_DEBUG(outer);
|
|
eigen_assert(outer==0);
|
|
return insert(inner);
|
|
}
|
|
Scalar& insert(Index i)
|
|
{
|
|
eigen_assert(i>=0 && i<m_size);
|
|
|
|
Index startId = 0;
|
|
Index p = Index(m_data.size()) - 1;
|
|
// TODO smart realloc
|
|
m_data.resize(p+2,1);
|
|
|
|
while ( (p >= startId) && (m_data.index(p) > i) )
|
|
{
|
|
m_data.index(p+1) = m_data.index(p);
|
|
m_data.value(p+1) = m_data.value(p);
|
|
--p;
|
|
}
|
|
m_data.index(p+1) = convert_index(i);
|
|
m_data.value(p+1) = 0;
|
|
return m_data.value(p+1);
|
|
}
|
|
|
|
/**
|
|
*/
|
|
inline void reserve(Index reserveSize) { m_data.reserve(reserveSize); }
|
|
|
|
|
|
inline void finalize() {}
|
|
|
|
/** \copydoc SparseMatrix::prune(const Scalar&,const RealScalar&) */
|
|
Index prune(const Scalar& reference, const RealScalar& epsilon = NumTraits<RealScalar>::dummy_precision()) {
|
|
return prune([&](const Scalar& val){ return !internal::isMuchSmallerThan(val, reference, epsilon); });
|
|
}
|
|
|
|
/**
|
|
* \brief Prunes the entries of the vector based on a `predicate`
|
|
* \tparam F Type of the predicate.
|
|
* \param keep_predicate The predicate that is used to test whether a value should be kept. A callable that
|
|
* gets passed om a `Scalar` value and returns a boolean. If the predicate returns true, the value is kept.
|
|
* \return The new number of structural non-zeros.
|
|
*/
|
|
template<class F>
|
|
Index prune(F&& keep_predicate)
|
|
{
|
|
Index k = 0;
|
|
Index n = m_data.size();
|
|
for (Index i = 0; i < n; ++i)
|
|
{
|
|
if (keep_predicate(m_data.value(i)))
|
|
{
|
|
m_data.value(k) = std::move(m_data.value(i));
|
|
m_data.index(k) = m_data.index(i);
|
|
++k;
|
|
}
|
|
}
|
|
m_data.resize(k);
|
|
return k;
|
|
}
|
|
|
|
/** Resizes the sparse vector to \a rows x \a cols
|
|
*
|
|
* This method is provided for compatibility with matrices.
|
|
* For a column vector, \a cols must be equal to 1.
|
|
* For a row vector, \a rows must be equal to 1.
|
|
*
|
|
* \sa resize(Index)
|
|
*/
|
|
void resize(Index rows, Index cols)
|
|
{
|
|
eigen_assert((IsColVector ? cols : rows)==1 && "Outer dimension must equal 1");
|
|
resize(IsColVector ? rows : cols);
|
|
}
|
|
|
|
/** Resizes the sparse vector to \a newSize
|
|
* This method deletes all entries, thus leaving an empty sparse vector
|
|
*
|
|
* \sa conservativeResize(), setZero() */
|
|
void resize(Index newSize)
|
|
{
|
|
m_size = newSize;
|
|
m_data.clear();
|
|
}
|
|
|
|
/** Resizes the sparse vector to \a newSize, while leaving old values untouched.
|
|
*
|
|
* If the size of the vector is decreased, then the storage of the out-of bounds coefficients is kept and reserved.
|
|
* Call .data().squeeze() to free extra memory.
|
|
*
|
|
* \sa reserve(), setZero()
|
|
*/
|
|
void conservativeResize(Index newSize)
|
|
{
|
|
if (newSize < m_size)
|
|
{
|
|
Index i = 0;
|
|
while (i<m_data.size() && m_data.index(i)<newSize) ++i;
|
|
m_data.resize(i);
|
|
}
|
|
m_size = newSize;
|
|
}
|
|
|
|
void resizeNonZeros(Index size) { m_data.resize(size); }
|
|
|
|
inline SparseVector() : m_size(0) { resize(0); }
|
|
|
|
explicit inline SparseVector(Index size) : m_size(0) { resize(size); }
|
|
|
|
inline SparseVector(Index rows, Index cols) : m_size(0) { resize(rows,cols); }
|
|
|
|
template<typename OtherDerived>
|
|
inline SparseVector(const SparseMatrixBase<OtherDerived>& other)
|
|
: m_size(0)
|
|
{
|
|
#ifdef EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN
|
|
EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN
|
|
#endif
|
|
*this = other.derived();
|
|
}
|
|
|
|
inline SparseVector(const SparseVector& other)
|
|
: Base(other), m_size(0)
|
|
{
|
|
*this = other.derived();
|
|
}
|
|
|
|
/** Swaps the values of \c *this and \a other.
|
|
* Overloaded for performance: this version performs a \em shallow swap by swapping pointers and attributes only.
|
|
* \sa SparseMatrixBase::swap()
|
|
*/
|
|
inline void swap(SparseVector& other)
|
|
{
|
|
std::swap(m_size, other.m_size);
|
|
m_data.swap(other.m_data);
|
|
}
|
|
|
|
template<int OtherOptions>
|
|
inline void swap(SparseMatrix<Scalar,OtherOptions,StorageIndex>& other)
|
|
{
|
|
eigen_assert(other.outerSize()==1);
|
|
std::swap(m_size, other.m_innerSize);
|
|
m_data.swap(other.m_data);
|
|
}
|
|
|
|
inline SparseVector& operator=(const SparseVector& other)
|
|
{
|
|
if (other.isRValue())
|
|
{
|
|
swap(other.const_cast_derived());
|
|
}
|
|
else
|
|
{
|
|
resize(other.size());
|
|
m_data = other.m_data;
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
template<typename OtherDerived>
|
|
inline SparseVector& operator=(const SparseMatrixBase<OtherDerived>& other)
|
|
{
|
|
SparseVector tmp(other.size());
|
|
internal::sparse_vector_assign_selector<SparseVector,OtherDerived>::run(tmp,other.derived());
|
|
this->swap(tmp);
|
|
return *this;
|
|
}
|
|
|
|
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
|
template<typename Lhs, typename Rhs>
|
|
inline SparseVector& operator=(const SparseSparseProduct<Lhs,Rhs>& product)
|
|
{
|
|
return Base::operator=(product);
|
|
}
|
|
#endif
|
|
|
|
#ifndef EIGEN_NO_IO
|
|
friend std::ostream & operator << (std::ostream & s, const SparseVector& m)
|
|
{
|
|
for (Index i=0; i<m.nonZeros(); ++i)
|
|
s << "(" << m.m_data.value(i) << "," << m.m_data.index(i) << ") ";
|
|
s << std::endl;
|
|
return s;
|
|
}
|
|
#endif
|
|
|
|
/** Destructor */
|
|
inline ~SparseVector() {}
|
|
|
|
/** Overloaded for performance */
|
|
Scalar sum() const;
|
|
|
|
public:
|
|
|
|
/** \internal \deprecated use setZero() and reserve() */
|
|
EIGEN_DEPRECATED void startFill(Index reserve)
|
|
{
|
|
setZero();
|
|
m_data.reserve(reserve);
|
|
}
|
|
|
|
/** \internal \deprecated use insertBack(Index,Index) */
|
|
EIGEN_DEPRECATED Scalar& fill(Index r, Index c)
|
|
{
|
|
eigen_assert(r==0 || c==0);
|
|
return fill(IsColVector ? r : c);
|
|
}
|
|
|
|
/** \internal \deprecated use insertBack(Index) */
|
|
EIGEN_DEPRECATED Scalar& fill(Index i)
|
|
{
|
|
m_data.append(0, i);
|
|
return m_data.value(m_data.size()-1);
|
|
}
|
|
|
|
/** \internal \deprecated use insert(Index,Index) */
|
|
EIGEN_DEPRECATED Scalar& fillrand(Index r, Index c)
|
|
{
|
|
eigen_assert(r==0 || c==0);
|
|
return fillrand(IsColVector ? r : c);
|
|
}
|
|
|
|
/** \internal \deprecated use insert(Index) */
|
|
EIGEN_DEPRECATED Scalar& fillrand(Index i)
|
|
{
|
|
return insert(i);
|
|
}
|
|
|
|
/** \internal \deprecated use finalize() */
|
|
EIGEN_DEPRECATED void endFill() {}
|
|
|
|
// These two functions were here in the 3.1 release, so let's keep them in case some code rely on them.
|
|
/** \internal \deprecated use data() */
|
|
EIGEN_DEPRECATED Storage& _data() { return m_data; }
|
|
/** \internal \deprecated use data() */
|
|
EIGEN_DEPRECATED const Storage& _data() const { return m_data; }
|
|
|
|
# ifdef EIGEN_SPARSEVECTOR_PLUGIN
|
|
# include EIGEN_SPARSEVECTOR_PLUGIN
|
|
# endif
|
|
|
|
protected:
|
|
EIGEN_STATIC_ASSERT(NumTraits<StorageIndex>::IsSigned,THE_INDEX_TYPE_MUST_BE_A_SIGNED_TYPE)
|
|
EIGEN_STATIC_ASSERT((Options_&(ColMajor|RowMajor))==Options,INVALID_MATRIX_TEMPLATE_PARAMETERS)
|
|
|
|
Storage m_data;
|
|
Index m_size;
|
|
};
|
|
|
|
namespace internal {
|
|
|
|
template<typename Scalar_, int Options_, typename Index_>
|
|
struct evaluator<SparseVector<Scalar_,Options_,Index_> >
|
|
: evaluator_base<SparseVector<Scalar_,Options_,Index_> >
|
|
{
|
|
typedef SparseVector<Scalar_,Options_,Index_> SparseVectorType;
|
|
typedef evaluator_base<SparseVectorType> Base;
|
|
typedef typename SparseVectorType::InnerIterator InnerIterator;
|
|
typedef typename SparseVectorType::ReverseInnerIterator ReverseInnerIterator;
|
|
|
|
enum {
|
|
CoeffReadCost = NumTraits<Scalar_>::ReadCost,
|
|
Flags = SparseVectorType::Flags
|
|
};
|
|
|
|
evaluator() : Base() {}
|
|
|
|
explicit evaluator(const SparseVectorType &mat) : m_matrix(&mat)
|
|
{
|
|
EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost);
|
|
}
|
|
|
|
inline Index nonZerosEstimate() const {
|
|
return m_matrix->nonZeros();
|
|
}
|
|
|
|
operator SparseVectorType&() { return m_matrix->const_cast_derived(); }
|
|
operator const SparseVectorType&() const { return *m_matrix; }
|
|
|
|
const SparseVectorType *m_matrix;
|
|
};
|
|
|
|
template< typename Dest, typename Src>
|
|
struct sparse_vector_assign_selector<Dest,Src,SVA_Inner> {
|
|
static void run(Dest& dst, const Src& src) {
|
|
eigen_internal_assert(src.innerSize()==src.size());
|
|
typedef internal::evaluator<Src> SrcEvaluatorType;
|
|
SrcEvaluatorType srcEval(src);
|
|
for(typename SrcEvaluatorType::InnerIterator it(srcEval, 0); it; ++it)
|
|
dst.insert(it.index()) = it.value();
|
|
}
|
|
};
|
|
|
|
template< typename Dest, typename Src>
|
|
struct sparse_vector_assign_selector<Dest,Src,SVA_Outer> {
|
|
static void run(Dest& dst, const Src& src) {
|
|
eigen_internal_assert(src.outerSize()==src.size());
|
|
typedef internal::evaluator<Src> SrcEvaluatorType;
|
|
SrcEvaluatorType srcEval(src);
|
|
for(Index i=0; i<src.size(); ++i)
|
|
{
|
|
typename SrcEvaluatorType::InnerIterator it(srcEval, i);
|
|
if(it)
|
|
dst.insert(i) = it.value();
|
|
}
|
|
}
|
|
};
|
|
|
|
template< typename Dest, typename Src>
|
|
struct sparse_vector_assign_selector<Dest,Src,SVA_RuntimeSwitch> {
|
|
static void run(Dest& dst, const Src& src) {
|
|
if(src.outerSize()==1) sparse_vector_assign_selector<Dest,Src,SVA_Inner>::run(dst, src);
|
|
else sparse_vector_assign_selector<Dest,Src,SVA_Outer>::run(dst, src);
|
|
}
|
|
};
|
|
|
|
}
|
|
|
|
// Specialization for SparseVector.
|
|
// Serializes [size, numNonZeros, innerIndices, values].
|
|
template <typename Scalar, int Options, typename StorageIndex>
|
|
class Serializer<SparseVector<Scalar, Options, StorageIndex>, void> {
|
|
public:
|
|
typedef SparseVector<Scalar, Options, StorageIndex> SparseMat;
|
|
|
|
struct Header {
|
|
typename SparseMat::Index size;
|
|
Index num_non_zeros;
|
|
};
|
|
|
|
EIGEN_DEVICE_FUNC size_t size(const SparseMat& value) const {
|
|
return sizeof(Header) +
|
|
(sizeof(Scalar) + sizeof(StorageIndex)) * value.nonZeros();
|
|
}
|
|
|
|
EIGEN_DEVICE_FUNC uint8_t* serialize(uint8_t* dest, uint8_t* end,
|
|
const SparseMat& value) {
|
|
if (EIGEN_PREDICT_FALSE(dest == nullptr)) return nullptr;
|
|
if (EIGEN_PREDICT_FALSE(dest + size(value) > end)) return nullptr;
|
|
|
|
const size_t header_bytes = sizeof(Header);
|
|
Header header = {value.innerSize(), value.nonZeros()};
|
|
EIGEN_USING_STD(memcpy)
|
|
memcpy(dest, &header, header_bytes);
|
|
dest += header_bytes;
|
|
|
|
// Inner indices.
|
|
std::size_t data_bytes = sizeof(StorageIndex) * header.num_non_zeros;
|
|
memcpy(dest, value.innerIndexPtr(), data_bytes);
|
|
dest += data_bytes;
|
|
|
|
// Values.
|
|
data_bytes = sizeof(Scalar) * header.num_non_zeros;
|
|
memcpy(dest, value.valuePtr(), data_bytes);
|
|
dest += data_bytes;
|
|
|
|
return dest;
|
|
}
|
|
|
|
EIGEN_DEVICE_FUNC const uint8_t* deserialize(const uint8_t* src,
|
|
const uint8_t* end,
|
|
SparseMat& value) const {
|
|
if (EIGEN_PREDICT_FALSE(src == nullptr)) return nullptr;
|
|
if (EIGEN_PREDICT_FALSE(src + sizeof(Header) > end)) return nullptr;
|
|
|
|
const size_t header_bytes = sizeof(Header);
|
|
Header header;
|
|
EIGEN_USING_STD(memcpy)
|
|
memcpy(&header, src, header_bytes);
|
|
src += header_bytes;
|
|
|
|
value.setZero();
|
|
value.resize(header.size);
|
|
value.resizeNonZeros(header.num_non_zeros);
|
|
|
|
// Inner indices.
|
|
std::size_t data_bytes = sizeof(StorageIndex) * header.num_non_zeros;
|
|
if (EIGEN_PREDICT_FALSE(src + data_bytes > end)) return nullptr;
|
|
memcpy(value.innerIndexPtr(), src, data_bytes);
|
|
src += data_bytes;
|
|
|
|
// Values.
|
|
data_bytes = sizeof(Scalar) * header.num_non_zeros;
|
|
if (EIGEN_PREDICT_FALSE(src + data_bytes > end)) return nullptr;
|
|
memcpy(value.valuePtr(), src, data_bytes);
|
|
src += data_bytes;
|
|
return src;
|
|
}
|
|
};
|
|
|
|
} // end namespace Eigen
|
|
|
|
#endif // EIGEN_SPARSEVECTOR_H
|