mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-05-20 08:37:36 +08:00
559 lines
21 KiB
C++
559 lines
21 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2009-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#ifndef EIGEN_SPARSE_SELFADJOINTVIEW_H
|
|
#define EIGEN_SPARSE_SELFADJOINTVIEW_H
|
|
|
|
namespace Eigen {
|
|
|
|
/** \ingroup SparseCore_Module
|
|
* \class SparseSelfAdjointView
|
|
*
|
|
* \brief Pseudo expression to manipulate a triangular sparse matrix as a selfadjoint matrix.
|
|
*
|
|
* \param MatrixType the type of the dense matrix storing the coefficients
|
|
* \param Mode can be either \c #Lower or \c #Upper
|
|
*
|
|
* This class is an expression of a sefladjoint matrix from a triangular part of a matrix
|
|
* with given dense storage of the coefficients. It is the return type of MatrixBase::selfadjointView()
|
|
* and most of the time this is the only way that it is used.
|
|
*
|
|
* \sa SparseMatrixBase::selfadjointView()
|
|
*/
|
|
namespace internal {
|
|
|
|
template<typename MatrixType, unsigned int Mode>
|
|
struct traits<SparseSelfAdjointView<MatrixType,Mode> > : traits<MatrixType> {
|
|
};
|
|
|
|
template<int SrcMode,int DstMode,typename MatrixType,int DestOrder>
|
|
void permute_symm_to_symm(const MatrixType& mat, SparseMatrix<typename MatrixType::Scalar,DestOrder,typename MatrixType::StorageIndex>& _dest, const typename MatrixType::StorageIndex* perm = 0);
|
|
|
|
template<int Mode,typename MatrixType,int DestOrder>
|
|
void permute_symm_to_fullsymm(const MatrixType& mat, SparseMatrix<typename MatrixType::Scalar,DestOrder,typename MatrixType::StorageIndex>& _dest, const typename MatrixType::StorageIndex* perm = 0);
|
|
|
|
}
|
|
|
|
template<typename MatrixType, unsigned int _Mode> class SparseSelfAdjointView
|
|
: public EigenBase<SparseSelfAdjointView<MatrixType,_Mode> >
|
|
{
|
|
public:
|
|
|
|
enum { Mode = _Mode };
|
|
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
typedef typename MatrixType::StorageIndex StorageIndex;
|
|
typedef Matrix<StorageIndex,Dynamic,1> VectorI;
|
|
typedef typename MatrixType::Nested MatrixTypeNested;
|
|
typedef typename internal::remove_all<MatrixTypeNested>::type _MatrixTypeNested;
|
|
|
|
explicit inline SparseSelfAdjointView(const MatrixType& matrix) : m_matrix(matrix)
|
|
{
|
|
eigen_assert(rows()==cols() && "SelfAdjointView is only for squared matrices");
|
|
}
|
|
|
|
inline StorageIndex rows() const { return m_matrix.rows(); }
|
|
inline StorageIndex cols() const { return m_matrix.cols(); }
|
|
|
|
/** \internal \returns a reference to the nested matrix */
|
|
const _MatrixTypeNested& matrix() const { return m_matrix; }
|
|
_MatrixTypeNested& matrix() { return m_matrix.const_cast_derived(); }
|
|
|
|
/** \returns an expression of the matrix product between a sparse self-adjoint matrix \c *this and a sparse matrix \a rhs.
|
|
*
|
|
* Note that there is no algorithmic advantage of performing such a product compared to a general sparse-sparse matrix product.
|
|
* Indeed, the SparseSelfadjointView operand is first copied into a temporary SparseMatrix before computing the product.
|
|
*/
|
|
template<typename OtherDerived>
|
|
Product<SparseSelfAdjointView, OtherDerived>
|
|
operator*(const SparseMatrixBase<OtherDerived>& rhs) const
|
|
{
|
|
return Product<SparseSelfAdjointView, OtherDerived>(*this, rhs.derived());
|
|
}
|
|
|
|
/** \returns an expression of the matrix product between a sparse matrix \a lhs and a sparse self-adjoint matrix \a rhs.
|
|
*
|
|
* Note that there is no algorithmic advantage of performing such a product compared to a general sparse-sparse matrix product.
|
|
* Indeed, the SparseSelfadjointView operand is first copied into a temporary SparseMatrix before computing the product.
|
|
*/
|
|
template<typename OtherDerived> friend
|
|
Product<OtherDerived, SparseSelfAdjointView>
|
|
operator*(const SparseMatrixBase<OtherDerived>& lhs, const SparseSelfAdjointView& rhs)
|
|
{
|
|
return Product<OtherDerived, SparseSelfAdjointView>(lhs.derived(), rhs);
|
|
}
|
|
|
|
/** Efficient sparse self-adjoint matrix times dense vector/matrix product */
|
|
template<typename OtherDerived>
|
|
Product<SparseSelfAdjointView,OtherDerived>
|
|
operator*(const MatrixBase<OtherDerived>& rhs) const
|
|
{
|
|
return Product<SparseSelfAdjointView,OtherDerived>(*this, rhs.derived());
|
|
}
|
|
|
|
/** Efficient dense vector/matrix times sparse self-adjoint matrix product */
|
|
template<typename OtherDerived> friend
|
|
Product<OtherDerived,SparseSelfAdjointView>
|
|
operator*(const MatrixBase<OtherDerived>& lhs, const SparseSelfAdjointView& rhs)
|
|
{
|
|
return Product<OtherDerived,SparseSelfAdjointView>(lhs.derived(), rhs);
|
|
}
|
|
|
|
/** Perform a symmetric rank K update of the selfadjoint matrix \c *this:
|
|
* \f$ this = this + \alpha ( u u^* ) \f$ where \a u is a vector or matrix.
|
|
*
|
|
* \returns a reference to \c *this
|
|
*
|
|
* To perform \f$ this = this + \alpha ( u^* u ) \f$ you can simply
|
|
* call this function with u.adjoint().
|
|
*/
|
|
template<typename DerivedU>
|
|
SparseSelfAdjointView& rankUpdate(const SparseMatrixBase<DerivedU>& u, const Scalar& alpha = Scalar(1));
|
|
|
|
/** \internal triggered by sparse_matrix = SparseSelfadjointView; */
|
|
template<typename DestScalar,int StorageOrder> void evalTo(SparseMatrix<DestScalar,StorageOrder,StorageIndex>& _dest) const
|
|
{
|
|
internal::permute_symm_to_fullsymm<Mode>(m_matrix, _dest);
|
|
}
|
|
|
|
template<typename DestScalar> void evalTo(DynamicSparseMatrix<DestScalar,ColMajor,StorageIndex>& _dest) const
|
|
{
|
|
// TODO directly evaluate into _dest;
|
|
SparseMatrix<DestScalar,ColMajor,StorageIndex> tmp(_dest.rows(),_dest.cols());
|
|
internal::permute_symm_to_fullsymm<Mode>(m_matrix, tmp);
|
|
_dest = tmp;
|
|
}
|
|
|
|
/** \returns an expression of P H P^-1 */
|
|
// TODO implement twists in a more evaluator friendly fashion
|
|
SparseSymmetricPermutationProduct<_MatrixTypeNested,Mode> twistedBy(const PermutationMatrix<Dynamic,Dynamic,StorageIndex>& perm) const
|
|
{
|
|
return SparseSymmetricPermutationProduct<_MatrixTypeNested,Mode>(m_matrix, perm);
|
|
}
|
|
|
|
template<typename SrcMatrixType,int SrcMode>
|
|
SparseSelfAdjointView& operator=(const SparseSymmetricPermutationProduct<SrcMatrixType,SrcMode>& permutedMatrix)
|
|
{
|
|
permutedMatrix.evalTo(*this);
|
|
return *this;
|
|
}
|
|
|
|
SparseSelfAdjointView& operator=(const SparseSelfAdjointView& src)
|
|
{
|
|
PermutationMatrix<Dynamic> pnull;
|
|
return *this = src.twistedBy(pnull);
|
|
}
|
|
|
|
template<typename SrcMatrixType,unsigned int SrcMode>
|
|
SparseSelfAdjointView& operator=(const SparseSelfAdjointView<SrcMatrixType,SrcMode>& src)
|
|
{
|
|
PermutationMatrix<Dynamic> pnull;
|
|
return *this = src.twistedBy(pnull);
|
|
}
|
|
|
|
protected:
|
|
|
|
typename MatrixType::Nested m_matrix;
|
|
//mutable VectorI m_countPerRow;
|
|
//mutable VectorI m_countPerCol;
|
|
};
|
|
|
|
/***************************************************************************
|
|
* Implementation of SparseMatrixBase methods
|
|
***************************************************************************/
|
|
|
|
template<typename Derived>
|
|
template<unsigned int Mode>
|
|
const SparseSelfAdjointView<const Derived, Mode> SparseMatrixBase<Derived>::selfadjointView() const
|
|
{
|
|
return SparseSelfAdjointView<const Derived, Mode>(derived());
|
|
}
|
|
|
|
template<typename Derived>
|
|
template<unsigned int Mode>
|
|
SparseSelfAdjointView<Derived, Mode> SparseMatrixBase<Derived>::selfadjointView()
|
|
{
|
|
return SparseSelfAdjointView<Derived, Mode>(derived());
|
|
}
|
|
|
|
/***************************************************************************
|
|
* Implementation of SparseSelfAdjointView methods
|
|
***************************************************************************/
|
|
|
|
template<typename MatrixType, unsigned int Mode>
|
|
template<typename DerivedU>
|
|
SparseSelfAdjointView<MatrixType,Mode>&
|
|
SparseSelfAdjointView<MatrixType,Mode>::rankUpdate(const SparseMatrixBase<DerivedU>& u, const Scalar& alpha)
|
|
{
|
|
SparseMatrix<Scalar,(MatrixType::Flags&RowMajorBit)?RowMajor:ColMajor> tmp = u * u.adjoint();
|
|
if(alpha==Scalar(0))
|
|
m_matrix.const_cast_derived() = tmp.template triangularView<Mode>();
|
|
else
|
|
m_matrix.const_cast_derived() += alpha * tmp.template triangularView<Mode>();
|
|
|
|
return *this;
|
|
}
|
|
|
|
/***************************************************************************
|
|
* Implementation of sparse self-adjoint time dense matrix
|
|
***************************************************************************/
|
|
|
|
namespace internal {
|
|
|
|
template<int Mode, typename SparseLhsType, typename DenseRhsType, typename DenseResType, typename AlphaType>
|
|
inline void sparse_selfadjoint_time_dense_product(const SparseLhsType& lhs, const DenseRhsType& rhs, DenseResType& res, const AlphaType& alpha)
|
|
{
|
|
EIGEN_ONLY_USED_FOR_DEBUG(alpha);
|
|
// TODO use alpha
|
|
eigen_assert(alpha==AlphaType(1) && "alpha != 1 is not implemented yet, sorry");
|
|
|
|
typedef typename evaluator<SparseLhsType>::type LhsEval;
|
|
typedef typename evaluator<SparseLhsType>::InnerIterator LhsIterator;
|
|
typedef typename SparseLhsType::Scalar LhsScalar;
|
|
|
|
enum {
|
|
LhsIsRowMajor = (LhsEval::Flags&RowMajorBit)==RowMajorBit,
|
|
ProcessFirstHalf =
|
|
((Mode&(Upper|Lower))==(Upper|Lower))
|
|
|| ( (Mode&Upper) && !LhsIsRowMajor)
|
|
|| ( (Mode&Lower) && LhsIsRowMajor),
|
|
ProcessSecondHalf = !ProcessFirstHalf
|
|
};
|
|
|
|
LhsEval lhsEval(lhs);
|
|
|
|
for (Index j=0; j<lhs.outerSize(); ++j)
|
|
{
|
|
LhsIterator i(lhsEval,j);
|
|
if (ProcessSecondHalf)
|
|
{
|
|
while (i && i.index()<j) ++i;
|
|
if(i && i.index()==j)
|
|
{
|
|
res.row(j) += i.value() * rhs.row(j);
|
|
++i;
|
|
}
|
|
}
|
|
for(; (ProcessFirstHalf ? i && i.index() < j : i) ; ++i)
|
|
{
|
|
Index a = LhsIsRowMajor ? j : i.index();
|
|
Index b = LhsIsRowMajor ? i.index() : j;
|
|
LhsScalar v = i.value();
|
|
res.row(a) += (v) * rhs.row(b);
|
|
res.row(b) += numext::conj(v) * rhs.row(a);
|
|
}
|
|
if (ProcessFirstHalf && i && (i.index()==j))
|
|
res.row(j) += i.value() * rhs.row(j);
|
|
}
|
|
}
|
|
|
|
// TODO currently a selfadjoint expression has the form SelfAdjointView<.,.>
|
|
// in the future selfadjoint-ness should be defined by the expression traits
|
|
// such that Transpose<SelfAdjointView<.,.> > is valid. (currently TriangularBase::transpose() is overloaded to make it work)
|
|
template<typename MatrixType, unsigned int Mode>
|
|
struct evaluator_traits<SparseSelfAdjointView<MatrixType,Mode> >
|
|
{
|
|
typedef typename storage_kind_to_evaluator_kind<typename MatrixType::StorageKind>::Kind Kind;
|
|
typedef SparseSelfAdjointShape Shape;
|
|
|
|
static const int AssumeAliasing = 0;
|
|
};
|
|
|
|
template<typename LhsView, typename Rhs, int ProductType>
|
|
struct generic_product_impl<LhsView, Rhs, SparseSelfAdjointShape, DenseShape, ProductType>
|
|
{
|
|
template<typename Dest>
|
|
static void evalTo(Dest& dst, const LhsView& lhsView, const Rhs& rhs)
|
|
{
|
|
typedef typename LhsView::_MatrixTypeNested Lhs;
|
|
typedef typename nested_eval<Lhs,Dynamic>::type LhsNested;
|
|
typedef typename nested_eval<Rhs,Dynamic>::type RhsNested;
|
|
LhsNested lhsNested(lhsView.matrix());
|
|
RhsNested rhsNested(rhs);
|
|
|
|
dst.setZero();
|
|
internal::sparse_selfadjoint_time_dense_product<LhsView::Mode>(lhsNested, rhsNested, dst, typename Dest::Scalar(1));
|
|
}
|
|
};
|
|
|
|
template<typename Lhs, typename RhsView, int ProductType>
|
|
struct generic_product_impl<Lhs, RhsView, DenseShape, SparseSelfAdjointShape, ProductType>
|
|
{
|
|
template<typename Dest>
|
|
static void evalTo(Dest& dst, const Lhs& lhs, const RhsView& rhsView)
|
|
{
|
|
typedef typename RhsView::_MatrixTypeNested Rhs;
|
|
typedef typename nested_eval<Lhs,Dynamic>::type LhsNested;
|
|
typedef typename nested_eval<Rhs,Dynamic>::type RhsNested;
|
|
LhsNested lhsNested(lhs);
|
|
RhsNested rhsNested(rhsView.matrix());
|
|
|
|
dst.setZero();
|
|
// transpoe everything
|
|
Transpose<Dest> dstT(dst);
|
|
internal::sparse_selfadjoint_time_dense_product<RhsView::Mode>(rhsNested.transpose(), lhsNested.transpose(), dstT, typename Dest::Scalar(1));
|
|
}
|
|
};
|
|
|
|
// NOTE: these two overloads are needed to evaluate the sparse selfadjoint view into a full sparse matrix
|
|
// TODO: maybe the copy could be handled by generic_product_impl so that these overloads would not be needed anymore
|
|
|
|
template<typename LhsView, typename Rhs, int ProductTag>
|
|
struct product_evaluator<Product<LhsView, Rhs, DefaultProduct>, ProductTag, SparseSelfAdjointShape, SparseShape, typename traits<LhsView>::Scalar, typename traits<Rhs>::Scalar>
|
|
: public evaluator<typename Product<typename Rhs::PlainObject, Rhs, DefaultProduct>::PlainObject>::type
|
|
{
|
|
typedef Product<LhsView, Rhs, DefaultProduct> XprType;
|
|
typedef typename XprType::PlainObject PlainObject;
|
|
typedef typename evaluator<PlainObject>::type Base;
|
|
|
|
product_evaluator(const XprType& xpr)
|
|
: m_lhs(xpr.lhs()), m_result(xpr.rows(), xpr.cols())
|
|
{
|
|
::new (static_cast<Base*>(this)) Base(m_result);
|
|
generic_product_impl<typename Rhs::PlainObject, Rhs, SparseShape, SparseShape, ProductTag>::evalTo(m_result, m_lhs, xpr.rhs());
|
|
}
|
|
|
|
protected:
|
|
typename Rhs::PlainObject m_lhs;
|
|
PlainObject m_result;
|
|
};
|
|
|
|
template<typename Lhs, typename RhsView, int ProductTag>
|
|
struct product_evaluator<Product<Lhs, RhsView, DefaultProduct>, ProductTag, SparseShape, SparseSelfAdjointShape, typename traits<Lhs>::Scalar, typename traits<RhsView>::Scalar>
|
|
: public evaluator<typename Product<Lhs, typename Lhs::PlainObject, DefaultProduct>::PlainObject>::type
|
|
{
|
|
typedef Product<Lhs, RhsView, DefaultProduct> XprType;
|
|
typedef typename XprType::PlainObject PlainObject;
|
|
typedef typename evaluator<PlainObject>::type Base;
|
|
|
|
product_evaluator(const XprType& xpr)
|
|
: m_rhs(xpr.rhs()), m_result(xpr.rows(), xpr.cols())
|
|
{
|
|
::new (static_cast<Base*>(this)) Base(m_result);
|
|
generic_product_impl<Lhs, typename Lhs::PlainObject, SparseShape, SparseShape, ProductTag>::evalTo(m_result, xpr.lhs(), m_rhs);
|
|
}
|
|
|
|
protected:
|
|
typename Lhs::PlainObject m_rhs;
|
|
PlainObject m_result;
|
|
};
|
|
|
|
} // namespace internal
|
|
|
|
/***************************************************************************
|
|
* Implementation of symmetric copies and permutations
|
|
***************************************************************************/
|
|
namespace internal {
|
|
|
|
template<int Mode,typename MatrixType,int DestOrder>
|
|
void permute_symm_to_fullsymm(const MatrixType& mat, SparseMatrix<typename MatrixType::Scalar,DestOrder,typename MatrixType::StorageIndex>& _dest, const typename MatrixType::StorageIndex* perm)
|
|
{
|
|
typedef typename MatrixType::StorageIndex StorageIndex;
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
typedef SparseMatrix<Scalar,DestOrder,StorageIndex> Dest;
|
|
typedef Matrix<StorageIndex,Dynamic,1> VectorI;
|
|
|
|
Dest& dest(_dest.derived());
|
|
enum {
|
|
StorageOrderMatch = int(Dest::IsRowMajor) == int(MatrixType::IsRowMajor)
|
|
};
|
|
|
|
Index size = mat.rows();
|
|
VectorI count;
|
|
count.resize(size);
|
|
count.setZero();
|
|
dest.resize(size,size);
|
|
for(Index j = 0; j<size; ++j)
|
|
{
|
|
Index jp = perm ? perm[j] : j;
|
|
for(typename MatrixType::InnerIterator it(mat,j); it; ++it)
|
|
{
|
|
Index i = it.index();
|
|
Index r = it.row();
|
|
Index c = it.col();
|
|
Index ip = perm ? perm[i] : i;
|
|
if(Mode==(Upper|Lower))
|
|
count[StorageOrderMatch ? jp : ip]++;
|
|
else if(r==c)
|
|
count[ip]++;
|
|
else if(( Mode==Lower && r>c) || ( Mode==Upper && r<c))
|
|
{
|
|
count[ip]++;
|
|
count[jp]++;
|
|
}
|
|
}
|
|
}
|
|
Index nnz = count.sum();
|
|
|
|
// reserve space
|
|
dest.resizeNonZeros(nnz);
|
|
dest.outerIndexPtr()[0] = 0;
|
|
for(Index j=0; j<size; ++j)
|
|
dest.outerIndexPtr()[j+1] = dest.outerIndexPtr()[j] + count[j];
|
|
for(Index j=0; j<size; ++j)
|
|
count[j] = dest.outerIndexPtr()[j];
|
|
|
|
// copy data
|
|
for(StorageIndex j = 0; j<size; ++j)
|
|
{
|
|
for(typename MatrixType::InnerIterator it(mat,j); it; ++it)
|
|
{
|
|
StorageIndex i = internal::convert_index<StorageIndex>(it.index());
|
|
Index r = it.row();
|
|
Index c = it.col();
|
|
|
|
StorageIndex jp = perm ? perm[j] : j;
|
|
StorageIndex ip = perm ? perm[i] : i;
|
|
|
|
if(Mode==(Upper|Lower))
|
|
{
|
|
Index k = count[StorageOrderMatch ? jp : ip]++;
|
|
dest.innerIndexPtr()[k] = StorageOrderMatch ? ip : jp;
|
|
dest.valuePtr()[k] = it.value();
|
|
}
|
|
else if(r==c)
|
|
{
|
|
Index k = count[ip]++;
|
|
dest.innerIndexPtr()[k] = ip;
|
|
dest.valuePtr()[k] = it.value();
|
|
}
|
|
else if(( (Mode&Lower)==Lower && r>c) || ( (Mode&Upper)==Upper && r<c))
|
|
{
|
|
if(!StorageOrderMatch)
|
|
std::swap(ip,jp);
|
|
Index k = count[jp]++;
|
|
dest.innerIndexPtr()[k] = ip;
|
|
dest.valuePtr()[k] = it.value();
|
|
k = count[ip]++;
|
|
dest.innerIndexPtr()[k] = jp;
|
|
dest.valuePtr()[k] = numext::conj(it.value());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template<int _SrcMode,int _DstMode,typename MatrixType,int DstOrder>
|
|
void permute_symm_to_symm(const MatrixType& mat, SparseMatrix<typename MatrixType::Scalar,DstOrder,typename MatrixType::StorageIndex>& _dest, const typename MatrixType::StorageIndex* perm)
|
|
{
|
|
typedef typename MatrixType::StorageIndex StorageIndex;
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
SparseMatrix<Scalar,DstOrder,StorageIndex>& dest(_dest.derived());
|
|
typedef Matrix<StorageIndex,Dynamic,1> VectorI;
|
|
enum {
|
|
SrcOrder = MatrixType::IsRowMajor ? RowMajor : ColMajor,
|
|
StorageOrderMatch = int(SrcOrder) == int(DstOrder),
|
|
DstMode = DstOrder==RowMajor ? (_DstMode==Upper ? Lower : Upper) : _DstMode,
|
|
SrcMode = SrcOrder==RowMajor ? (_SrcMode==Upper ? Lower : Upper) : _SrcMode
|
|
};
|
|
|
|
StorageIndex size = mat.rows();
|
|
VectorI count(size);
|
|
count.setZero();
|
|
dest.resize(size,size);
|
|
for(StorageIndex j = 0; j<size; ++j)
|
|
{
|
|
StorageIndex jp = perm ? perm[j] : j;
|
|
for(typename MatrixType::InnerIterator it(mat,j); it; ++it)
|
|
{
|
|
StorageIndex i = it.index();
|
|
if((int(SrcMode)==int(Lower) && i<j) || (int(SrcMode)==int(Upper) && i>j))
|
|
continue;
|
|
|
|
StorageIndex ip = perm ? perm[i] : i;
|
|
count[int(DstMode)==int(Lower) ? (std::min)(ip,jp) : (std::max)(ip,jp)]++;
|
|
}
|
|
}
|
|
dest.outerIndexPtr()[0] = 0;
|
|
for(Index j=0; j<size; ++j)
|
|
dest.outerIndexPtr()[j+1] = dest.outerIndexPtr()[j] + count[j];
|
|
dest.resizeNonZeros(dest.outerIndexPtr()[size]);
|
|
for(Index j=0; j<size; ++j)
|
|
count[j] = dest.outerIndexPtr()[j];
|
|
|
|
for(StorageIndex j = 0; j<size; ++j)
|
|
{
|
|
|
|
for(typename MatrixType::InnerIterator it(mat,j); it; ++it)
|
|
{
|
|
StorageIndex i = it.index();
|
|
if((int(SrcMode)==int(Lower) && i<j) || (int(SrcMode)==int(Upper) && i>j))
|
|
continue;
|
|
|
|
StorageIndex jp = perm ? perm[j] : j;
|
|
StorageIndex ip = perm? perm[i] : i;
|
|
|
|
Index k = count[int(DstMode)==int(Lower) ? (std::min)(ip,jp) : (std::max)(ip,jp)]++;
|
|
dest.innerIndexPtr()[k] = int(DstMode)==int(Lower) ? (std::max)(ip,jp) : (std::min)(ip,jp);
|
|
|
|
if(!StorageOrderMatch) std::swap(ip,jp);
|
|
if( ((int(DstMode)==int(Lower) && ip<jp) || (int(DstMode)==int(Upper) && ip>jp)))
|
|
dest.valuePtr()[k] = numext::conj(it.value());
|
|
else
|
|
dest.valuePtr()[k] = it.value();
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
// TODO implement twists in a more evaluator friendly fashion
|
|
|
|
namespace internal {
|
|
|
|
template<typename MatrixType, int Mode>
|
|
struct traits<SparseSymmetricPermutationProduct<MatrixType,Mode> > : traits<MatrixType> {
|
|
};
|
|
|
|
}
|
|
|
|
template<typename MatrixType,int Mode>
|
|
class SparseSymmetricPermutationProduct
|
|
: public EigenBase<SparseSymmetricPermutationProduct<MatrixType,Mode> >
|
|
{
|
|
public:
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
typedef typename MatrixType::StorageIndex StorageIndex;
|
|
protected:
|
|
typedef PermutationMatrix<Dynamic,Dynamic,StorageIndex> Perm;
|
|
public:
|
|
typedef Matrix<StorageIndex,Dynamic,1> VectorI;
|
|
typedef typename MatrixType::Nested MatrixTypeNested;
|
|
typedef typename internal::remove_all<MatrixTypeNested>::type _MatrixTypeNested;
|
|
|
|
SparseSymmetricPermutationProduct(const MatrixType& mat, const Perm& perm)
|
|
: m_matrix(mat), m_perm(perm)
|
|
{}
|
|
|
|
inline StorageIndex rows() const { return m_matrix.rows(); }
|
|
inline StorageIndex cols() const { return m_matrix.cols(); }
|
|
|
|
template<typename DestScalar, int Options, typename DstIndex>
|
|
void evalTo(SparseMatrix<DestScalar,Options,DstIndex>& _dest) const
|
|
{
|
|
// internal::permute_symm_to_fullsymm<Mode>(m_matrix,_dest,m_perm.indices().data());
|
|
SparseMatrix<DestScalar,(Options&RowMajor)==RowMajor ? ColMajor : RowMajor, DstIndex> tmp;
|
|
internal::permute_symm_to_fullsymm<Mode>(m_matrix,tmp,m_perm.indices().data());
|
|
_dest = tmp;
|
|
}
|
|
|
|
template<typename DestType,unsigned int DestMode> void evalTo(SparseSelfAdjointView<DestType,DestMode>& dest) const
|
|
{
|
|
internal::permute_symm_to_symm<Mode,DestMode>(m_matrix,dest.matrix(),m_perm.indices().data());
|
|
}
|
|
|
|
protected:
|
|
MatrixTypeNested m_matrix;
|
|
const Perm& m_perm;
|
|
|
|
};
|
|
|
|
} // end namespace Eigen
|
|
|
|
#endif // EIGEN_SPARSE_SELFADJOINTVIEW_H
|