eigen/Eigen/src/Core/Product.h
Gael Guennebaud ea23f36c78 * change the nesting order of adjoint_return_type to
1 - make it easier to catch conjugate expressions
 2 - make sure there is no unecessary copy (we had NestByValue<Derived> which seems to be very bad)
* update eigensolver wrt recent changes
2009-07-07 15:56:13 +02:00

785 lines
32 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_PRODUCT_H
#define EIGEN_PRODUCT_H
/***************************
*** Forward declarations ***
***************************/
template<int VectorizationMode, int Index, typename Lhs, typename Rhs, typename RetScalar>
struct ei_product_coeff_impl;
template<int StorageOrder, int Index, typename Lhs, typename Rhs, typename PacketScalar, int LoadMode>
struct ei_product_packet_impl;
/** \class ProductReturnType
*
* \brief Helper class to get the correct and optimized returned type of operator*
*
* \param Lhs the type of the left-hand side
* \param Rhs the type of the right-hand side
* \param ProductMode the type of the product (determined automatically by ei_product_mode)
*
* This class defines the typename Type representing the optimized product expression
* between two matrix expressions. In practice, using ProductReturnType<Lhs,Rhs>::Type
* is the recommended way to define the result type of a function returning an expression
* which involve a matrix product. The class Product should never be
* used directly.
*
* \sa class Product, MatrixBase::operator*(const MatrixBase<OtherDerived>&)
*/
template<typename Lhs, typename Rhs, int ProductMode>
struct ProductReturnType
{
typedef typename ei_nested<Lhs,Rhs::ColsAtCompileTime>::type LhsNested;
typedef typename ei_nested<Rhs,Lhs::RowsAtCompileTime>::type RhsNested;
typedef Product<LhsNested, RhsNested, ProductMode> Type;
};
// cache friendly specialization
template<typename Lhs, typename Rhs>
struct ProductReturnType<Lhs,Rhs,CacheFriendlyProduct>
{
typedef typename ei_nested<Lhs,Rhs::ColsAtCompileTime>::type LhsNested;
typedef typename ei_nested<Rhs,Lhs::RowsAtCompileTime,
typename ei_plain_matrix_type_column_major<Rhs>::type
>::type RhsNested;
typedef Product<LhsNested, RhsNested, CacheFriendlyProduct> Type;
};
/* Helper class to determine the type of the product, can be either:
* - NormalProduct
* - CacheFriendlyProduct
*/
template<typename Lhs, typename Rhs> struct ei_product_mode
{
enum{
value = Lhs::MaxColsAtCompileTime == Dynamic
&& ( Lhs::MaxRowsAtCompileTime == Dynamic
|| Rhs::MaxColsAtCompileTime == Dynamic )
&& (!(Rhs::IsVectorAtCompileTime && (Lhs::Flags&RowMajorBit) && (!(Lhs::Flags&DirectAccessBit))))
&& (!(Lhs::IsVectorAtCompileTime && (!(Rhs::Flags&RowMajorBit)) && (!(Rhs::Flags&DirectAccessBit))))
&& (ei_is_same_type<typename Lhs::Scalar, typename Rhs::Scalar>::ret)
? CacheFriendlyProduct
: NormalProduct };
};
/** \class Product
*
* \brief Expression of the product of two matrices
*
* \param LhsNested the type used to store the left-hand side
* \param RhsNested the type used to store the right-hand side
* \param ProductMode the type of the product
*
* This class represents an expression of the product of two matrices.
* It is the return type of the operator* between matrices. Its template
* arguments are determined automatically by ProductReturnType. Therefore,
* Product should never be used direclty. To determine the result type of a
* function which involves a matrix product, use ProductReturnType::Type.
*
* \sa ProductReturnType, MatrixBase::operator*(const MatrixBase<OtherDerived>&)
*/
template<typename LhsNested, typename RhsNested, int ProductMode>
struct ei_traits<Product<LhsNested, RhsNested, ProductMode> >
{
// clean the nested types:
typedef typename ei_cleantype<LhsNested>::type _LhsNested;
typedef typename ei_cleantype<RhsNested>::type _RhsNested;
typedef typename ei_scalar_product_traits<typename _LhsNested::Scalar, typename _RhsNested::Scalar>::ReturnType Scalar;
enum {
LhsCoeffReadCost = _LhsNested::CoeffReadCost,
RhsCoeffReadCost = _RhsNested::CoeffReadCost,
LhsFlags = _LhsNested::Flags,
RhsFlags = _RhsNested::Flags,
RowsAtCompileTime = _LhsNested::RowsAtCompileTime,
ColsAtCompileTime = _RhsNested::ColsAtCompileTime,
InnerSize = EIGEN_ENUM_MIN(_LhsNested::ColsAtCompileTime, _RhsNested::RowsAtCompileTime),
MaxRowsAtCompileTime = _LhsNested::MaxRowsAtCompileTime,
MaxColsAtCompileTime = _RhsNested::MaxColsAtCompileTime,
LhsRowMajor = LhsFlags & RowMajorBit,
RhsRowMajor = RhsFlags & RowMajorBit,
CanVectorizeRhs = RhsRowMajor && (RhsFlags & PacketAccessBit)
&& (ColsAtCompileTime % ei_packet_traits<Scalar>::size == 0),
CanVectorizeLhs = (!LhsRowMajor) && (LhsFlags & PacketAccessBit)
&& (RowsAtCompileTime % ei_packet_traits<Scalar>::size == 0),
EvalToRowMajor = RhsRowMajor && (ProductMode==(int)CacheFriendlyProduct ? LhsRowMajor : (!CanVectorizeLhs)),
RemovedBits = ~(EvalToRowMajor ? 0 : RowMajorBit),
Flags = ((unsigned int)(LhsFlags | RhsFlags) & HereditaryBits & RemovedBits)
| EvalBeforeAssigningBit
| EvalBeforeNestingBit
| (CanVectorizeLhs || CanVectorizeRhs ? PacketAccessBit : 0)
| (LhsFlags & RhsFlags & AlignedBit),
CoeffReadCost = InnerSize == Dynamic ? Dynamic
: InnerSize * (NumTraits<Scalar>::MulCost + LhsCoeffReadCost + RhsCoeffReadCost)
+ (InnerSize - 1) * NumTraits<Scalar>::AddCost,
/* CanVectorizeInner deserves special explanation. It does not affect the product flags. It is not used outside
* of Product. If the Product itself is not a packet-access expression, there is still a chance that the inner
* loop of the product might be vectorized. This is the meaning of CanVectorizeInner. Since it doesn't affect
* the Flags, it is safe to make this value depend on ActualPacketAccessBit, that doesn't affect the ABI.
*/
CanVectorizeInner = LhsRowMajor && (!RhsRowMajor) && (LhsFlags & RhsFlags & ActualPacketAccessBit)
&& (InnerSize % ei_packet_traits<Scalar>::size == 0)
};
};
template<typename LhsNested, typename RhsNested, int ProductMode> class Product : ei_no_assignment_operator,
public MatrixBase<Product<LhsNested, RhsNested, ProductMode> >
{
public:
EIGEN_GENERIC_PUBLIC_INTERFACE(Product)
private:
typedef typename ei_traits<Product>::_LhsNested _LhsNested;
typedef typename ei_traits<Product>::_RhsNested _RhsNested;
enum {
PacketSize = ei_packet_traits<Scalar>::size,
InnerSize = ei_traits<Product>::InnerSize,
Unroll = CoeffReadCost <= EIGEN_UNROLLING_LIMIT,
CanVectorizeInner = ei_traits<Product>::CanVectorizeInner
};
typedef ei_product_coeff_impl<CanVectorizeInner ? InnerVectorization : NoVectorization,
Unroll ? InnerSize-1 : Dynamic,
_LhsNested, _RhsNested, Scalar> ScalarCoeffImpl;
public:
template<typename Lhs, typename Rhs>
inline Product(const Lhs& lhs, const Rhs& rhs)
: m_lhs(lhs), m_rhs(rhs)
{
// we don't allow taking products of matrices of different real types, as that wouldn't be vectorizable.
// We still allow to mix T and complex<T>.
EIGEN_STATIC_ASSERT((ei_is_same_type<typename Lhs::RealScalar, typename Rhs::RealScalar>::ret),
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
ei_assert(lhs.cols() == rhs.rows()
&& "invalid matrix product"
&& "if you wanted a coeff-wise or a dot product use the respective explicit functions");
}
/** \internal
* compute \a res += \c *this using the cache friendly product.
*/
template<typename DestDerived>
void _cacheFriendlyEvalAndAdd(DestDerived& res, Scalar alpha) const;
/** \internal
* \returns whether it is worth it to use the cache friendly product.
*/
EIGEN_STRONG_INLINE bool _useCacheFriendlyProduct() const
{
return m_lhs.cols()>=EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD
&& ( rows()>=EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD
|| cols()>=EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD);
}
EIGEN_STRONG_INLINE int rows() const { return m_lhs.rows(); }
EIGEN_STRONG_INLINE int cols() const { return m_rhs.cols(); }
EIGEN_STRONG_INLINE const Scalar coeff(int row, int col) const
{
Scalar res;
ScalarCoeffImpl::run(row, col, m_lhs, m_rhs, res);
return res;
}
/* Allow index-based non-packet access. It is impossible though to allow index-based packed access,
* which is why we don't set the LinearAccessBit.
*/
EIGEN_STRONG_INLINE const Scalar coeff(int index) const
{
Scalar res;
const int row = RowsAtCompileTime == 1 ? 0 : index;
const int col = RowsAtCompileTime == 1 ? index : 0;
ScalarCoeffImpl::run(row, col, m_lhs, m_rhs, res);
return res;
}
template<int LoadMode>
EIGEN_STRONG_INLINE const PacketScalar packet(int row, int col) const
{
PacketScalar res;
ei_product_packet_impl<Flags&RowMajorBit ? RowMajor : ColMajor,
Unroll ? InnerSize-1 : Dynamic,
_LhsNested, _RhsNested, PacketScalar, LoadMode>
::run(row, col, m_lhs, m_rhs, res);
return res;
}
EIGEN_STRONG_INLINE const _LhsNested& lhs() const { return m_lhs; }
EIGEN_STRONG_INLINE const _RhsNested& rhs() const { return m_rhs; }
protected:
const LhsNested m_lhs;
const RhsNested m_rhs;
};
/** \returns the matrix product of \c *this and \a other.
*
* \note If instead of the matrix product you want the coefficient-wise product, see Cwise::operator*().
*
* \sa lazy(), operator*=(const MatrixBase&), Cwise::operator*()
*/
template<typename Derived>
template<typename OtherDerived>
inline const typename ProductReturnType<Derived,OtherDerived>::Type
MatrixBase<Derived>::operator*(const MatrixBase<OtherDerived> &other) const
{
enum {
ProductIsValid = Derived::ColsAtCompileTime==Dynamic
|| OtherDerived::RowsAtCompileTime==Dynamic
|| int(Derived::ColsAtCompileTime)==int(OtherDerived::RowsAtCompileTime),
AreVectors = Derived::IsVectorAtCompileTime && OtherDerived::IsVectorAtCompileTime,
SameSizes = EIGEN_PREDICATE_SAME_MATRIX_SIZE(Derived,OtherDerived)
};
// note to the lost user:
// * for a dot product use: v1.dot(v2)
// * for a coeff-wise product use: v1.cwise()*v2
EIGEN_STATIC_ASSERT(ProductIsValid || !(AreVectors && SameSizes),
INVALID_VECTOR_VECTOR_PRODUCT__IF_YOU_WANTED_A_DOT_OR_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTIONS)
EIGEN_STATIC_ASSERT(ProductIsValid || !(SameSizes && !AreVectors),
INVALID_MATRIX_PRODUCT__IF_YOU_WANTED_A_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTION)
EIGEN_STATIC_ASSERT(ProductIsValid || SameSizes, INVALID_MATRIX_PRODUCT)
return typename ProductReturnType<Derived,OtherDerived>::Type(derived(), other.derived());
}
/***************************************************************************
* Normal product .coeff() implementation (with meta-unrolling)
***************************************************************************/
/**************************************
*** Scalar path - no vectorization ***
**************************************/
template<int Index, typename Lhs, typename Rhs, typename RetScalar>
struct ei_product_coeff_impl<NoVectorization, Index, Lhs, Rhs, RetScalar>
{
EIGEN_STRONG_INLINE static void run(int row, int col, const Lhs& lhs, const Rhs& rhs, RetScalar &res)
{
ei_product_coeff_impl<NoVectorization, Index-1, Lhs, Rhs, RetScalar>::run(row, col, lhs, rhs, res);
res += lhs.coeff(row, Index) * rhs.coeff(Index, col);
}
};
template<typename Lhs, typename Rhs, typename RetScalar>
struct ei_product_coeff_impl<NoVectorization, 0, Lhs, Rhs, RetScalar>
{
EIGEN_STRONG_INLINE static void run(int row, int col, const Lhs& lhs, const Rhs& rhs, RetScalar &res)
{
res = lhs.coeff(row, 0) * rhs.coeff(0, col);
}
};
template<typename Lhs, typename Rhs, typename RetScalar>
struct ei_product_coeff_impl<NoVectorization, Dynamic, Lhs, Rhs, RetScalar>
{
EIGEN_STRONG_INLINE static void run(int row, int col, const Lhs& lhs, const Rhs& rhs, RetScalar& res)
{
ei_assert(lhs.cols()>0 && "you are using a non initialized matrix");
res = lhs.coeff(row, 0) * rhs.coeff(0, col);
for(int i = 1; i < lhs.cols(); ++i)
res += lhs.coeff(row, i) * rhs.coeff(i, col);
}
};
// prevent buggy user code from causing an infinite recursion
template<typename Lhs, typename Rhs, typename RetScalar>
struct ei_product_coeff_impl<NoVectorization, -1, Lhs, Rhs, RetScalar>
{
EIGEN_STRONG_INLINE static void run(int, int, const Lhs&, const Rhs&, RetScalar&) {}
};
/*******************************************
*** Scalar path with inner vectorization ***
*******************************************/
template<int Index, typename Lhs, typename Rhs, typename PacketScalar>
struct ei_product_coeff_vectorized_unroller
{
enum { PacketSize = ei_packet_traits<typename Lhs::Scalar>::size };
EIGEN_STRONG_INLINE static void run(int row, int col, const Lhs& lhs, const Rhs& rhs, typename Lhs::PacketScalar &pres)
{
ei_product_coeff_vectorized_unroller<Index-PacketSize, Lhs, Rhs, PacketScalar>::run(row, col, lhs, rhs, pres);
pres = ei_padd(pres, ei_pmul( lhs.template packet<Aligned>(row, Index) , rhs.template packet<Aligned>(Index, col) ));
}
};
template<typename Lhs, typename Rhs, typename PacketScalar>
struct ei_product_coeff_vectorized_unroller<0, Lhs, Rhs, PacketScalar>
{
EIGEN_STRONG_INLINE static void run(int row, int col, const Lhs& lhs, const Rhs& rhs, typename Lhs::PacketScalar &pres)
{
pres = ei_pmul(lhs.template packet<Aligned>(row, 0) , rhs.template packet<Aligned>(0, col));
}
};
template<int Index, typename Lhs, typename Rhs, typename RetScalar>
struct ei_product_coeff_impl<InnerVectorization, Index, Lhs, Rhs, RetScalar>
{
typedef typename Lhs::PacketScalar PacketScalar;
enum { PacketSize = ei_packet_traits<typename Lhs::Scalar>::size };
EIGEN_STRONG_INLINE static void run(int row, int col, const Lhs& lhs, const Rhs& rhs, RetScalar &res)
{
PacketScalar pres;
ei_product_coeff_vectorized_unroller<Index+1-PacketSize, Lhs, Rhs, PacketScalar>::run(row, col, lhs, rhs, pres);
ei_product_coeff_impl<NoVectorization,Index,Lhs,Rhs,RetScalar>::run(row, col, lhs, rhs, res);
res = ei_predux(pres);
}
};
template<typename Lhs, typename Rhs, int LhsRows = Lhs::RowsAtCompileTime, int RhsCols = Rhs::ColsAtCompileTime>
struct ei_product_coeff_vectorized_dyn_selector
{
EIGEN_STRONG_INLINE static void run(int row, int col, const Lhs& lhs, const Rhs& rhs, typename Lhs::Scalar &res)
{
res = ei_dot_impl<
Block<Lhs, 1, ei_traits<Lhs>::ColsAtCompileTime>,
Block<Rhs, ei_traits<Rhs>::RowsAtCompileTime, 1>,
LinearVectorization, NoUnrolling>::run(lhs.row(row), rhs.col(col));
}
};
// NOTE the 3 following specializations are because taking .col(0) on a vector is a bit slower
// NOTE maybe they are now useless since we have a specialization for Block<Matrix>
template<typename Lhs, typename Rhs, int RhsCols>
struct ei_product_coeff_vectorized_dyn_selector<Lhs,Rhs,1,RhsCols>
{
EIGEN_STRONG_INLINE static void run(int /*row*/, int col, const Lhs& lhs, const Rhs& rhs, typename Lhs::Scalar &res)
{
res = ei_dot_impl<
Lhs,
Block<Rhs, ei_traits<Rhs>::RowsAtCompileTime, 1>,
LinearVectorization, NoUnrolling>::run(lhs, rhs.col(col));
}
};
template<typename Lhs, typename Rhs, int LhsRows>
struct ei_product_coeff_vectorized_dyn_selector<Lhs,Rhs,LhsRows,1>
{
EIGEN_STRONG_INLINE static void run(int row, int /*col*/, const Lhs& lhs, const Rhs& rhs, typename Lhs::Scalar &res)
{
res = ei_dot_impl<
Block<Lhs, 1, ei_traits<Lhs>::ColsAtCompileTime>,
Rhs,
LinearVectorization, NoUnrolling>::run(lhs.row(row), rhs);
}
};
template<typename Lhs, typename Rhs>
struct ei_product_coeff_vectorized_dyn_selector<Lhs,Rhs,1,1>
{
EIGEN_STRONG_INLINE static void run(int /*row*/, int /*col*/, const Lhs& lhs, const Rhs& rhs, typename Lhs::Scalar &res)
{
res = ei_dot_impl<
Lhs,
Rhs,
LinearVectorization, NoUnrolling>::run(lhs, rhs);
}
};
template<typename Lhs, typename Rhs, typename RetScalar>
struct ei_product_coeff_impl<InnerVectorization, Dynamic, Lhs, Rhs, RetScalar>
{
EIGEN_STRONG_INLINE static void run(int row, int col, const Lhs& lhs, const Rhs& rhs, typename Lhs::Scalar &res)
{
ei_product_coeff_vectorized_dyn_selector<Lhs,Rhs>::run(row, col, lhs, rhs, res);
}
};
/*******************
*** Packet path ***
*******************/
template<int Index, typename Lhs, typename Rhs, typename PacketScalar, int LoadMode>
struct ei_product_packet_impl<RowMajor, Index, Lhs, Rhs, PacketScalar, LoadMode>
{
EIGEN_STRONG_INLINE static void run(int row, int col, const Lhs& lhs, const Rhs& rhs, PacketScalar &res)
{
ei_product_packet_impl<RowMajor, Index-1, Lhs, Rhs, PacketScalar, LoadMode>::run(row, col, lhs, rhs, res);
res = ei_pmadd(ei_pset1(lhs.coeff(row, Index)), rhs.template packet<LoadMode>(Index, col), res);
}
};
template<int Index, typename Lhs, typename Rhs, typename PacketScalar, int LoadMode>
struct ei_product_packet_impl<ColMajor, Index, Lhs, Rhs, PacketScalar, LoadMode>
{
EIGEN_STRONG_INLINE static void run(int row, int col, const Lhs& lhs, const Rhs& rhs, PacketScalar &res)
{
ei_product_packet_impl<ColMajor, Index-1, Lhs, Rhs, PacketScalar, LoadMode>::run(row, col, lhs, rhs, res);
res = ei_pmadd(lhs.template packet<LoadMode>(row, Index), ei_pset1(rhs.coeff(Index, col)), res);
}
};
template<typename Lhs, typename Rhs, typename PacketScalar, int LoadMode>
struct ei_product_packet_impl<RowMajor, 0, Lhs, Rhs, PacketScalar, LoadMode>
{
EIGEN_STRONG_INLINE static void run(int row, int col, const Lhs& lhs, const Rhs& rhs, PacketScalar &res)
{
res = ei_pmul(ei_pset1(lhs.coeff(row, 0)),rhs.template packet<LoadMode>(0, col));
}
};
template<typename Lhs, typename Rhs, typename PacketScalar, int LoadMode>
struct ei_product_packet_impl<ColMajor, 0, Lhs, Rhs, PacketScalar, LoadMode>
{
EIGEN_STRONG_INLINE static void run(int row, int col, const Lhs& lhs, const Rhs& rhs, PacketScalar &res)
{
res = ei_pmul(lhs.template packet<LoadMode>(row, 0), ei_pset1(rhs.coeff(0, col)));
}
};
template<typename Lhs, typename Rhs, typename PacketScalar, int LoadMode>
struct ei_product_packet_impl<RowMajor, Dynamic, Lhs, Rhs, PacketScalar, LoadMode>
{
EIGEN_STRONG_INLINE static void run(int row, int col, const Lhs& lhs, const Rhs& rhs, PacketScalar& res)
{
ei_assert(lhs.cols()>0 && "you are using a non initialized matrix");
res = ei_pmul(ei_pset1(lhs.coeff(row, 0)),rhs.template packet<LoadMode>(0, col));
for(int i = 1; i < lhs.cols(); ++i)
res = ei_pmadd(ei_pset1(lhs.coeff(row, i)), rhs.template packet<LoadMode>(i, col), res);
}
};
template<typename Lhs, typename Rhs, typename PacketScalar, int LoadMode>
struct ei_product_packet_impl<ColMajor, Dynamic, Lhs, Rhs, PacketScalar, LoadMode>
{
EIGEN_STRONG_INLINE static void run(int row, int col, const Lhs& lhs, const Rhs& rhs, PacketScalar& res)
{
ei_assert(lhs.cols()>0 && "you are using a non initialized matrix");
res = ei_pmul(lhs.template packet<LoadMode>(row, 0), ei_pset1(rhs.coeff(0, col)));
for(int i = 1; i < lhs.cols(); ++i)
res = ei_pmadd(lhs.template packet<LoadMode>(row, i), ei_pset1(rhs.coeff(i, col)), res);
}
};
/***************************************************************************
* Cache friendly product callers and specific nested evaluation strategies
***************************************************************************/
// Forward declarations
template<typename Scalar, bool ConjugateLhs, bool ConjugateRhs>
void ei_cache_friendly_product(
int _rows, int _cols, int depth,
bool _lhsRowMajor, const Scalar* _lhs, int _lhsStride,
bool _rhsRowMajor, const Scalar* _rhs, int _rhsStride,
bool resRowMajor, Scalar* res, int resStride,
Scalar alpha);
template<typename Scalar, typename RhsType>
static void ei_cache_friendly_product_colmajor_times_vector(
int size, const Scalar* lhs, int lhsStride, const RhsType& rhs, Scalar* res, Scalar alpha);
template<typename Scalar, typename ResType>
static void ei_cache_friendly_product_rowmajor_times_vector(
const Scalar* lhs, int lhsStride, const Scalar* rhs, int rhsSize, ResType& res, Scalar alpha);
template<typename ProductType,
int LhsRows = ei_traits<ProductType>::RowsAtCompileTime,
int LhsOrder = int(ei_traits<ProductType>::LhsFlags)&RowMajorBit ? RowMajor : ColMajor,
int LhsHasDirectAccess = int(ei_traits<ProductType>::LhsFlags)&DirectAccessBit? HasDirectAccess : NoDirectAccess,
int RhsCols = ei_traits<ProductType>::ColsAtCompileTime,
int RhsOrder = int(ei_traits<ProductType>::RhsFlags)&RowMajorBit ? RowMajor : ColMajor,
int RhsHasDirectAccess = int(ei_traits<ProductType>::RhsFlags)&DirectAccessBit? HasDirectAccess : NoDirectAccess>
struct ei_cache_friendly_product_selector
{
template<typename DestDerived>
inline static void run(DestDerived& res, const ProductType& product, typename ProductType::Scalar alpha)
{
product._cacheFriendlyEvalAndAdd(res, alpha);
}
};
// optimized colmajor * vector path
template<typename ProductType, int LhsRows, int RhsOrder, int RhsAccess>
struct ei_cache_friendly_product_selector<ProductType,LhsRows,ColMajor,NoDirectAccess,1,RhsOrder,RhsAccess>
{
template<typename DestDerived>
inline static void run(DestDerived& res, const ProductType& product, typename ProductType::Scalar alpha)
{
// FIXME is it really used ?
ei_assert(alpha==typename ProductType::Scalar(1));
const int size = product.rhs().rows();
for (int k=0; k<size; ++k)
res += product.rhs().coeff(k) * product.lhs().col(k);
}
};
// optimized cache friendly colmajor * vector path for matrix with direct access flag
// NOTE this path could also be enabled for expressions if we add runtime align queries
template<typename ProductType, int LhsRows, int RhsOrder, int RhsAccess>
struct ei_cache_friendly_product_selector<ProductType,LhsRows,ColMajor,HasDirectAccess,1,RhsOrder,RhsAccess>
{
typedef typename ProductType::Scalar Scalar;
template<typename DestDerived>
inline static void run(DestDerived& res, const ProductType& product, typename ProductType::Scalar alpha)
{
enum {
EvalToRes = (ei_packet_traits<Scalar>::size==1)
||((DestDerived::Flags&ActualPacketAccessBit) && (!(DestDerived::Flags & RowMajorBit))) };
Scalar* EIGEN_RESTRICT _res;
if (EvalToRes)
_res = &res.coeffRef(0);
else
{
_res = ei_aligned_stack_new(Scalar,res.size());
Map<Matrix<Scalar,DestDerived::RowsAtCompileTime,1> >(_res, res.size()) = res;
}
ei_cache_friendly_product_colmajor_times_vector(res.size(),
&product.lhs().const_cast_derived().coeffRef(0,0), product.lhs().stride(),
product.rhs(), _res, alpha);
if (!EvalToRes)
{
res = Map<Matrix<Scalar,DestDerived::SizeAtCompileTime,1> >(_res, res.size());
ei_aligned_stack_delete(Scalar, _res, res.size());
}
}
};
// optimized vector * rowmajor path
template<typename ProductType, int LhsOrder, int LhsAccess, int RhsCols>
struct ei_cache_friendly_product_selector<ProductType,1,LhsOrder,LhsAccess,RhsCols,RowMajor,NoDirectAccess>
{
template<typename DestDerived>
inline static void run(DestDerived& res, const ProductType& product, typename ProductType::Scalar alpha)
{
ei_assert(alpha==typename ProductType::Scalar(1));
const int cols = product.lhs().cols();
for (int j=0; j<cols; ++j)
res += product.lhs().coeff(j) * product.rhs().row(j);
}
};
// optimized cache friendly vector * rowmajor path for matrix with direct access flag
// NOTE this path coul also be enabled for expressions if we add runtime align queries
template<typename ProductType, int LhsOrder, int LhsAccess, int RhsCols>
struct ei_cache_friendly_product_selector<ProductType,1,LhsOrder,LhsAccess,RhsCols,RowMajor,HasDirectAccess>
{
typedef typename ProductType::Scalar Scalar;
template<typename DestDerived>
inline static void run(DestDerived& res, const ProductType& product, typename ProductType::Scalar alpha)
{
enum {
EvalToRes = (ei_packet_traits<Scalar>::size==1)
||((DestDerived::Flags & ActualPacketAccessBit) && (DestDerived::Flags & RowMajorBit)) };
Scalar* EIGEN_RESTRICT _res;
if (EvalToRes)
_res = &res.coeffRef(0);
else
{
_res = ei_aligned_stack_new(Scalar, res.size());
Map<Matrix<Scalar,DestDerived::SizeAtCompileTime,1> >(_res, res.size()) = res;
}
ei_cache_friendly_product_colmajor_times_vector(res.size(),
&product.rhs().const_cast_derived().coeffRef(0,0), product.rhs().stride(),
product.lhs().transpose(), _res, alpha);
if (!EvalToRes)
{
res = Map<Matrix<Scalar,DestDerived::SizeAtCompileTime,1> >(_res, res.size());
ei_aligned_stack_delete(Scalar, _res, res.size());
}
}
};
// optimized rowmajor - vector product
template<typename ProductType, int LhsRows, int RhsOrder, int RhsAccess>
struct ei_cache_friendly_product_selector<ProductType,LhsRows,RowMajor,HasDirectAccess,1,RhsOrder,RhsAccess>
{
typedef typename ProductType::Scalar Scalar;
typedef typename ei_traits<ProductType>::_RhsNested Rhs;
enum {
UseRhsDirectly = ((ei_packet_traits<Scalar>::size==1) || (Rhs::Flags&ActualPacketAccessBit))
&& (!(Rhs::Flags & RowMajorBit)) };
template<typename DestDerived>
inline static void run(DestDerived& res, const ProductType& product, typename ProductType::Scalar alpha)
{
Scalar* EIGEN_RESTRICT _rhs;
if (UseRhsDirectly)
_rhs = &product.rhs().const_cast_derived().coeffRef(0);
else
{
_rhs = ei_aligned_stack_new(Scalar, product.rhs().size());
Map<Matrix<Scalar,Rhs::SizeAtCompileTime,1> >(_rhs, product.rhs().size()) = product.rhs();
}
ei_cache_friendly_product_rowmajor_times_vector(&product.lhs().const_cast_derived().coeffRef(0,0), product.lhs().stride(),
_rhs, product.rhs().size(), res, alpha);
if (!UseRhsDirectly) ei_aligned_stack_delete(Scalar, _rhs, product.rhs().size());
}
};
// optimized vector - colmajor product
template<typename ProductType, int LhsOrder, int LhsAccess, int RhsCols>
struct ei_cache_friendly_product_selector<ProductType,1,LhsOrder,LhsAccess,RhsCols,ColMajor,HasDirectAccess>
{
typedef typename ProductType::Scalar Scalar;
typedef typename ei_traits<ProductType>::_LhsNested Lhs;
enum {
UseLhsDirectly = ((ei_packet_traits<Scalar>::size==1) || (Lhs::Flags&ActualPacketAccessBit))
&& (Lhs::Flags & RowMajorBit) };
template<typename DestDerived>
inline static void run(DestDerived& res, const ProductType& product, typename ProductType::Scalar alpha)
{
Scalar* EIGEN_RESTRICT _lhs;
if (UseLhsDirectly)
_lhs = &product.lhs().const_cast_derived().coeffRef(0);
else
{
_lhs = ei_aligned_stack_new(Scalar, product.lhs().size());
Map<Matrix<Scalar,Lhs::SizeAtCompileTime,1> >(_lhs, product.lhs().size()) = product.lhs();
}
ei_cache_friendly_product_rowmajor_times_vector(&product.rhs().const_cast_derived().coeffRef(0,0), product.rhs().stride(),
_lhs, product.lhs().size(), res, alpha);
if(!UseLhsDirectly) ei_aligned_stack_delete(Scalar, _lhs, product.lhs().size());
}
};
// discard this case which has to be handled by the default path
// (we keep it to be sure to hit a compilation error if this is not the case)
template<typename ProductType, int LhsRows, int RhsOrder, int RhsAccess>
struct ei_cache_friendly_product_selector<ProductType,LhsRows,RowMajor,NoDirectAccess,1,RhsOrder,RhsAccess>
{};
// discard this case which has to be handled by the default path
// (we keep it to be sure to hit a compilation error if this is not the case)
template<typename ProductType, int LhsOrder, int LhsAccess, int RhsCols>
struct ei_cache_friendly_product_selector<ProductType,1,LhsOrder,LhsAccess,RhsCols,ColMajor,NoDirectAccess>
{};
/** \internal
* Overloaded to perform an efficient C += A*B */
template<typename Derived>
template<typename Lhs,typename Rhs>
inline Derived&
MatrixBase<Derived>::operator+=(const Flagged<Product<Lhs,Rhs,CacheFriendlyProduct>, 0, EvalBeforeNestingBit | EvalBeforeAssigningBit>& other)
{
if (other._expression()._useCacheFriendlyProduct())
ei_cache_friendly_product_selector<Product<Lhs,Rhs,CacheFriendlyProduct> >::run(const_cast_derived(), other._expression(), Scalar(1));
else
lazyAssign(derived() + other._expression());
return derived();
}
/** \internal
* Overloaded to perform an efficient C -= A*B */
template<typename Derived>
template<typename Lhs,typename Rhs>
inline Derived&
MatrixBase<Derived>::operator-=(const Flagged<Product<Lhs,Rhs,CacheFriendlyProduct>, 0, EvalBeforeNestingBit | EvalBeforeAssigningBit>& other)
{
if (other._expression()._useCacheFriendlyProduct())
ei_cache_friendly_product_selector<Product<Lhs,Rhs,CacheFriendlyProduct> >::run(const_cast_derived(), other._expression(), Scalar(-1));
else
lazyAssign(derived() - other._expression());
return derived();
}
/** \internal
* Overloaded to perform an efficient C = A*B */
template<typename Derived>
template<typename Lhs, typename Rhs>
inline Derived& MatrixBase<Derived>::lazyAssign(const Product<Lhs,Rhs,CacheFriendlyProduct>& product)
{
if (product._useCacheFriendlyProduct())
{
setZero();
ei_cache_friendly_product_selector<Product<Lhs,Rhs,CacheFriendlyProduct> >::run(const_cast_derived(), product, Scalar(1));
}
else
{
lazyAssign(static_cast<const MatrixBase<Product<Lhs,Rhs,CacheFriendlyProduct> > &>(product));
}
return derived();
}
template<typename T> struct ei_product_copy_rhs
{
typedef typename ei_meta_if<
(ei_traits<T>::Flags & RowMajorBit)
|| (!(ei_traits<T>::Flags & DirectAccessBit)),
typename ei_plain_matrix_type_column_major<T>::type,
const T&
>::ret type;
};
template<typename T> struct ei_product_copy_lhs
{
typedef typename ei_meta_if<
(!(int(ei_traits<T>::Flags) & DirectAccessBit)),
typename ei_plain_matrix_type<T>::type,
const T&
>::ret type;
};
template<typename Lhs, typename Rhs, int ProductMode>
template<typename DestDerived>
inline void Product<Lhs,Rhs,ProductMode>::_cacheFriendlyEvalAndAdd(DestDerived& res, Scalar alpha) const
{
typedef typename ei_product_copy_lhs<_LhsNested>::type LhsCopy;
typedef typename ei_unref<LhsCopy>::type _LhsCopy;
typedef typename ei_product_copy_rhs<_RhsNested>::type RhsCopy;
typedef typename ei_unref<RhsCopy>::type _RhsCopy;
LhsCopy lhs(m_lhs);
RhsCopy rhs(m_rhs);
ei_cache_friendly_product<Scalar,false,false>(
rows(), cols(), lhs.cols(),
_LhsCopy::Flags&RowMajorBit, (const Scalar*)&(lhs.const_cast_derived().coeffRef(0,0)), lhs.stride(),
_RhsCopy::Flags&RowMajorBit, (const Scalar*)&(rhs.const_cast_derived().coeffRef(0,0)), rhs.stride(),
Flags&RowMajorBit, (Scalar*)&(res.coeffRef(0,0)), res.stride(),
alpha
);
}
#endif // EIGEN_PRODUCT_H