mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-04-22 09:39:34 +08:00

using SuperLU. Calling SuperLU was very painful, but it was worth it, it seems to be damn fast !
149 lines
4.9 KiB
C++
149 lines
4.9 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra. Eigen itself is part of the KDE project.
|
|
//
|
|
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#ifndef EIGEN_SPARSELU_H
|
|
#define EIGEN_SPARSELU_H
|
|
|
|
/** \ingroup Sparse_Module
|
|
*
|
|
* \class SparseLU
|
|
*
|
|
* \brief LU decomposition of a sparse matrix and associated features
|
|
*
|
|
* \param MatrixType the type of the matrix of which we are computing the LU factorization
|
|
*
|
|
* \sa class LU, class SparseLLT
|
|
*/
|
|
template<typename MatrixType, int Backend = DefaultBackend>
|
|
class SparseLU
|
|
{
|
|
protected:
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
|
|
typedef SparseMatrix<Scalar,Lower> LUMatrixType;
|
|
|
|
enum {
|
|
MatrixLUIsDirty = 0x10000
|
|
};
|
|
|
|
public:
|
|
|
|
/** Creates a dummy LU factorization object with flags \a flags. */
|
|
SparseLU(int flags = 0)
|
|
: m_flags(flags), m_status(0)
|
|
{
|
|
m_precision = RealScalar(0.1) * Eigen::precision<RealScalar>();
|
|
}
|
|
|
|
/** Creates a LU object and compute the respective factorization of \a matrix using
|
|
* flags \a flags. */
|
|
SparseLU(const MatrixType& matrix, int flags = 0)
|
|
: /*m_matrix(matrix.rows(), matrix.cols()),*/ m_flags(flags), m_status(0)
|
|
{
|
|
m_precision = RealScalar(0.1) * Eigen::precision<RealScalar>();
|
|
compute(matrix);
|
|
}
|
|
|
|
/** Sets the relative threshold value used to prune zero coefficients during the decomposition.
|
|
*
|
|
* Setting a value greater than zero speeds up computation, and yields to an imcomplete
|
|
* factorization with fewer non zero coefficients. Such approximate factors are especially
|
|
* useful to initialize an iterative solver.
|
|
*
|
|
* Note that the exact meaning of this parameter might depends on the actual
|
|
* backend. Moreover, not all backends support this feature.
|
|
*
|
|
* \sa precision() */
|
|
void setPrecision(RealScalar v) { m_precision = v; }
|
|
|
|
/** \returns the current precision.
|
|
*
|
|
* \sa setPrecision() */
|
|
RealScalar precision() const { return m_precision; }
|
|
|
|
/** Sets the flags. Possible values are:
|
|
* - CompleteFactorization
|
|
* - IncompleteFactorization
|
|
* - MemoryEfficient
|
|
* - one of the ordering methods
|
|
* - etc...
|
|
*
|
|
* \sa flags() */
|
|
void setFlags(int f) { m_flags = f; }
|
|
/** \returns the current flags */
|
|
int flags() const { return m_flags; }
|
|
|
|
void setOrderingMethod(int m)
|
|
{
|
|
ei_assert(m&~OrderingMask == 0 && m!=0 && "invalid ordering method");
|
|
m_flags = m_flags&~OrderingMask | m&OrderingMask;
|
|
}
|
|
|
|
int orderingMethod() const
|
|
{
|
|
return m_flags&OrderingMask;
|
|
}
|
|
|
|
/** Computes/re-computes the LU factorization */
|
|
void compute(const MatrixType& matrix);
|
|
|
|
/** \returns the lower triangular matrix L */
|
|
//inline const MatrixType& matrixL() const { return m_matrixL; }
|
|
|
|
/** \returns the upper triangular matrix U */
|
|
//inline const MatrixType& matrixU() const { return m_matrixU; }
|
|
|
|
template<typename BDerived, typename XDerived>
|
|
bool solve(const MatrixBase<BDerived> &b, MatrixBase<XDerived>* x) const;
|
|
|
|
/** \returns true if the factorization succeeded */
|
|
inline bool succeeded(void) const { return m_succeeded; }
|
|
|
|
protected:
|
|
RealScalar m_precision;
|
|
int m_flags;
|
|
mutable int m_status;
|
|
bool m_succeeded;
|
|
};
|
|
|
|
/** Computes / recomputes the LU decomposition of matrix \a a
|
|
* using the default algorithm.
|
|
*/
|
|
template<typename MatrixType, int Backend>
|
|
void SparseLU<MatrixType,Backend>::compute(const MatrixType& a)
|
|
{
|
|
ei_assert(false && "not implemented yet");
|
|
}
|
|
|
|
/** Computes *x = U^-1 L^-1 b */
|
|
template<typename MatrixType, int Backend>
|
|
template<typename BDerived, typename XDerived>
|
|
bool SparseLU<MatrixType,Backend>::solve(const MatrixBase<BDerived> &b, MatrixBase<XDerived>* x) const
|
|
{
|
|
ei_assert(false && "not implemented yet");
|
|
return false;
|
|
}
|
|
|
|
#endif // EIGEN_SPARSELU_H
|