eigen/Eigen/src/Sparse/SparseLU.h
Gael Guennebaud ecc6c43dba sparse module: add preliminary support for direct sparse LU solver
using SuperLU. Calling SuperLU was very painful, but it was worth it,
it seems to be damn fast !
2008-10-19 15:26:28 +00:00

149 lines
4.9 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_SPARSELU_H
#define EIGEN_SPARSELU_H
/** \ingroup Sparse_Module
*
* \class SparseLU
*
* \brief LU decomposition of a sparse matrix and associated features
*
* \param MatrixType the type of the matrix of which we are computing the LU factorization
*
* \sa class LU, class SparseLLT
*/
template<typename MatrixType, int Backend = DefaultBackend>
class SparseLU
{
protected:
typedef typename MatrixType::Scalar Scalar;
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
typedef SparseMatrix<Scalar,Lower> LUMatrixType;
enum {
MatrixLUIsDirty = 0x10000
};
public:
/** Creates a dummy LU factorization object with flags \a flags. */
SparseLU(int flags = 0)
: m_flags(flags), m_status(0)
{
m_precision = RealScalar(0.1) * Eigen::precision<RealScalar>();
}
/** Creates a LU object and compute the respective factorization of \a matrix using
* flags \a flags. */
SparseLU(const MatrixType& matrix, int flags = 0)
: /*m_matrix(matrix.rows(), matrix.cols()),*/ m_flags(flags), m_status(0)
{
m_precision = RealScalar(0.1) * Eigen::precision<RealScalar>();
compute(matrix);
}
/** Sets the relative threshold value used to prune zero coefficients during the decomposition.
*
* Setting a value greater than zero speeds up computation, and yields to an imcomplete
* factorization with fewer non zero coefficients. Such approximate factors are especially
* useful to initialize an iterative solver.
*
* Note that the exact meaning of this parameter might depends on the actual
* backend. Moreover, not all backends support this feature.
*
* \sa precision() */
void setPrecision(RealScalar v) { m_precision = v; }
/** \returns the current precision.
*
* \sa setPrecision() */
RealScalar precision() const { return m_precision; }
/** Sets the flags. Possible values are:
* - CompleteFactorization
* - IncompleteFactorization
* - MemoryEfficient
* - one of the ordering methods
* - etc...
*
* \sa flags() */
void setFlags(int f) { m_flags = f; }
/** \returns the current flags */
int flags() const { return m_flags; }
void setOrderingMethod(int m)
{
ei_assert(m&~OrderingMask == 0 && m!=0 && "invalid ordering method");
m_flags = m_flags&~OrderingMask | m&OrderingMask;
}
int orderingMethod() const
{
return m_flags&OrderingMask;
}
/** Computes/re-computes the LU factorization */
void compute(const MatrixType& matrix);
/** \returns the lower triangular matrix L */
//inline const MatrixType& matrixL() const { return m_matrixL; }
/** \returns the upper triangular matrix U */
//inline const MatrixType& matrixU() const { return m_matrixU; }
template<typename BDerived, typename XDerived>
bool solve(const MatrixBase<BDerived> &b, MatrixBase<XDerived>* x) const;
/** \returns true if the factorization succeeded */
inline bool succeeded(void) const { return m_succeeded; }
protected:
RealScalar m_precision;
int m_flags;
mutable int m_status;
bool m_succeeded;
};
/** Computes / recomputes the LU decomposition of matrix \a a
* using the default algorithm.
*/
template<typename MatrixType, int Backend>
void SparseLU<MatrixType,Backend>::compute(const MatrixType& a)
{
ei_assert(false && "not implemented yet");
}
/** Computes *x = U^-1 L^-1 b */
template<typename MatrixType, int Backend>
template<typename BDerived, typename XDerived>
bool SparseLU<MatrixType,Backend>::solve(const MatrixBase<BDerived> &b, MatrixBase<XDerived>* x) const
{
ei_assert(false && "not implemented yet");
return false;
}
#endif // EIGEN_SPARSELU_H