mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-04-19 16:19:37 +08:00
349 lines
12 KiB
C++
349 lines
12 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
/*
|
|
|
|
NOTE: the _symbolic, and _numeric functions has been adapted from
|
|
the LDL library:
|
|
|
|
LDL Copyright (c) 2005 by Timothy A. Davis. All Rights Reserved.
|
|
|
|
LDL License:
|
|
|
|
Your use or distribution of LDL or any modified version of
|
|
LDL implies that you agree to this License.
|
|
|
|
This library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
This library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with this library; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
|
|
USA
|
|
|
|
Permission is hereby granted to use or copy this program under the
|
|
terms of the GNU LGPL, provided that the Copyright, this License,
|
|
and the Availability of the original version is retained on all copies.
|
|
User documentation of any code that uses this code or any modified
|
|
version of this code must cite the Copyright, this License, the
|
|
Availability note, and "Used by permission." Permission to modify
|
|
the code and to distribute modified code is granted, provided the
|
|
Copyright, this License, and the Availability note are retained,
|
|
and a notice that the code was modified is included.
|
|
*/
|
|
|
|
#ifndef EIGEN_SPARSELDLT_H
|
|
#define EIGEN_SPARSELDLT_H
|
|
|
|
/** \ingroup Sparse_Module
|
|
*
|
|
* \class SparseLDLT
|
|
*
|
|
* \brief LDLT Cholesky decomposition of a sparse matrix and associated features
|
|
*
|
|
* \param MatrixType the type of the matrix of which we are computing the LDLT Cholesky decomposition
|
|
*
|
|
* \warning the upper triangular part has to be specified. The rest of the matrix is not used. The input matrix must be column major.
|
|
*
|
|
* \sa class LDLT, class LDLT
|
|
*/
|
|
template<typename MatrixType, int Backend = DefaultBackend>
|
|
class SparseLDLT
|
|
{
|
|
protected:
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
typedef typename MatrixType::Index Index;
|
|
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
|
|
typedef SparseMatrix<Scalar> CholMatrixType;
|
|
typedef Matrix<Scalar,MatrixType::ColsAtCompileTime,1> VectorType;
|
|
|
|
enum {
|
|
SupernodalFactorIsDirty = 0x10000,
|
|
MatrixLIsDirty = 0x20000
|
|
};
|
|
|
|
public:
|
|
|
|
/** Creates a dummy LDLT factorization object with flags \a flags. */
|
|
SparseLDLT(int flags = 0)
|
|
: m_flags(flags), m_status(0)
|
|
{
|
|
ei_assert((MatrixType::Flags&RowMajorBit)==0);
|
|
m_precision = RealScalar(0.1) * Eigen::NumTraits<RealScalar>::dummy_precision();
|
|
}
|
|
|
|
/** Creates a LDLT object and compute the respective factorization of \a matrix using
|
|
* flags \a flags. */
|
|
SparseLDLT(const MatrixType& matrix, int flags = 0)
|
|
: m_matrix(matrix.rows(), matrix.cols()), m_flags(flags), m_status(0)
|
|
{
|
|
ei_assert((MatrixType::Flags&RowMajorBit)==0);
|
|
m_precision = RealScalar(0.1) * Eigen::NumTraits<RealScalar>::dummy_precision();
|
|
compute(matrix);
|
|
}
|
|
|
|
/** Sets the relative threshold value used to prune zero coefficients during the decomposition.
|
|
*
|
|
* Setting a value greater than zero speeds up computation, and yields to an imcomplete
|
|
* factorization with fewer non zero coefficients. Such approximate factors are especially
|
|
* useful to initialize an iterative solver.
|
|
*
|
|
* \warning if precision is greater that zero, the LDLT factorization is not guaranteed to succeed
|
|
* even if the matrix is positive definite.
|
|
*
|
|
* Note that the exact meaning of this parameter might depends on the actual
|
|
* backend. Moreover, not all backends support this feature.
|
|
*
|
|
* \sa precision() */
|
|
void setPrecision(RealScalar v) { m_precision = v; }
|
|
|
|
/** \returns the current precision.
|
|
*
|
|
* \sa setPrecision() */
|
|
RealScalar precision() const { return m_precision; }
|
|
|
|
/** Sets the flags. Possible values are:
|
|
* - CompleteFactorization
|
|
* - IncompleteFactorization
|
|
* - MemoryEfficient (hint to use the memory most efficient method offered by the backend)
|
|
* - SupernodalMultifrontal (implies a complete factorization if supported by the backend,
|
|
* overloads the MemoryEfficient flags)
|
|
* - SupernodalLeftLooking (implies a complete factorization if supported by the backend,
|
|
* overloads the MemoryEfficient flags)
|
|
*
|
|
* \sa flags() */
|
|
void settags(int f) { m_flags = f; }
|
|
/** \returns the current flags */
|
|
int flags() const { return m_flags; }
|
|
|
|
/** Computes/re-computes the LDLT factorization */
|
|
void compute(const MatrixType& matrix);
|
|
|
|
/** Perform a symbolic factorization */
|
|
void _symbolic(const MatrixType& matrix);
|
|
/** Perform the actual factorization using the previously
|
|
* computed symbolic factorization */
|
|
bool _numeric(const MatrixType& matrix);
|
|
|
|
/** \returns the lower triangular matrix L */
|
|
inline const CholMatrixType& matrixL(void) const { return m_matrix; }
|
|
|
|
/** \returns the coefficients of the diagonal matrix D */
|
|
inline VectorType vectorD(void) const { return m_diag; }
|
|
|
|
template<typename Derived>
|
|
bool solveInPlace(MatrixBase<Derived> &b) const;
|
|
|
|
/** \returns true if the factorization succeeded */
|
|
inline bool succeeded(void) const { return m_succeeded; }
|
|
|
|
protected:
|
|
CholMatrixType m_matrix;
|
|
VectorType m_diag;
|
|
VectorXi m_parent; // elimination tree
|
|
VectorXi m_nonZerosPerCol;
|
|
// VectorXi m_w; // workspace
|
|
RealScalar m_precision;
|
|
int m_flags;
|
|
mutable int m_status;
|
|
bool m_succeeded;
|
|
};
|
|
|
|
/** Computes / recomputes the LDLT decomposition of matrix \a a
|
|
* using the default algorithm.
|
|
*/
|
|
template<typename MatrixType, int Backend>
|
|
void SparseLDLT<MatrixType,Backend>::compute(const MatrixType& a)
|
|
{
|
|
_symbolic(a);
|
|
m_succeeded = _numeric(a);
|
|
}
|
|
|
|
template<typename MatrixType, int Backend>
|
|
void SparseLDLT<MatrixType,Backend>::_symbolic(const MatrixType& a)
|
|
{
|
|
assert(a.rows()==a.cols());
|
|
const Index size = a.rows();
|
|
m_matrix.resize(size, size);
|
|
m_parent.resize(size);
|
|
m_nonZerosPerCol.resize(size);
|
|
Index * tags = ei_aligned_stack_new(Index, size);
|
|
|
|
const Index* Ap = a._outerIndexPtr();
|
|
const Index* Ai = a._innerIndexPtr();
|
|
Index* Lp = m_matrix._outerIndexPtr();
|
|
const Index* P = 0;
|
|
Index* Pinv = 0;
|
|
|
|
if (P)
|
|
{
|
|
/* If P is present then compute Pinv, the inverse of P */
|
|
for (Index k = 0; k < size; ++k)
|
|
Pinv[P[k]] = k;
|
|
}
|
|
for (Index k = 0; k < size; ++k)
|
|
{
|
|
/* L(k,:) pattern: all nodes reachable in etree from nz in A(0:k-1,k) */
|
|
m_parent[k] = -1; /* parent of k is not yet known */
|
|
tags[k] = k; /* mark node k as visited */
|
|
m_nonZerosPerCol[k] = 0; /* count of nonzeros in column k of L */
|
|
Index kk = P ? P[k] : k; /* kth original, or permuted, column */
|
|
Index p2 = Ap[kk+1];
|
|
for (Index p = Ap[kk]; p < p2; ++p)
|
|
{
|
|
/* A (i,k) is nonzero (original or permuted A) */
|
|
Index i = Pinv ? Pinv[Ai[p]] : Ai[p];
|
|
if (i < k)
|
|
{
|
|
/* follow path from i to root of etree, stop at flagged node */
|
|
for (; tags[i] != k; i = m_parent[i])
|
|
{
|
|
/* find parent of i if not yet determined */
|
|
if (m_parent[i] == -1)
|
|
m_parent[i] = k;
|
|
++m_nonZerosPerCol[i]; /* L (k,i) is nonzero */
|
|
tags[i] = k; /* mark i as visited */
|
|
}
|
|
}
|
|
}
|
|
}
|
|
/* construct Lp index array from m_nonZerosPerCol column counts */
|
|
Lp[0] = 0;
|
|
for (Index k = 0; k < size; ++k)
|
|
Lp[k+1] = Lp[k] + m_nonZerosPerCol[k];
|
|
|
|
m_matrix.resizeNonZeros(Lp[size]);
|
|
ei_aligned_stack_delete(Index, tags, size);
|
|
}
|
|
|
|
template<typename MatrixType, int Backend>
|
|
bool SparseLDLT<MatrixType,Backend>::_numeric(const MatrixType& a)
|
|
{
|
|
assert(a.rows()==a.cols());
|
|
const Index size = a.rows();
|
|
assert(m_parent.size()==size);
|
|
assert(m_nonZerosPerCol.size()==size);
|
|
|
|
const Index* Ap = a._outerIndexPtr();
|
|
const Index* Ai = a._innerIndexPtr();
|
|
const Scalar* Ax = a._valuePtr();
|
|
const Index* Lp = m_matrix._outerIndexPtr();
|
|
Index* Li = m_matrix._innerIndexPtr();
|
|
Scalar* Lx = m_matrix._valuePtr();
|
|
m_diag.resize(size);
|
|
|
|
Scalar * y = ei_aligned_stack_new(Scalar, size);
|
|
Index * pattern = ei_aligned_stack_new(Index, size);
|
|
Index * tags = ei_aligned_stack_new(Index, size);
|
|
|
|
const Index* P = 0;
|
|
const Index* Pinv = 0;
|
|
bool ok = true;
|
|
|
|
for (Index k = 0; k < size; ++k)
|
|
{
|
|
/* compute nonzero pattern of kth row of L, in topological order */
|
|
y[k] = 0.0; /* Y(0:k) is now all zero */
|
|
Index top = size; /* stack for pattern is empty */
|
|
tags[k] = k; /* mark node k as visited */
|
|
m_nonZerosPerCol[k] = 0; /* count of nonzeros in column k of L */
|
|
Index kk = (P) ? (P[k]) : (k); /* kth original, or permuted, column */
|
|
Index p2 = Ap[kk+1];
|
|
for (Index p = Ap[kk]; p < p2; ++p)
|
|
{
|
|
Index i = Pinv ? Pinv[Ai[p]] : Ai[p]; /* get A(i,k) */
|
|
if (i <= k)
|
|
{
|
|
y[i] += ei_conj(Ax[p]); /* scatter A(i,k) into Y (sum duplicates) */
|
|
Index len;
|
|
for (len = 0; tags[i] != k; i = m_parent[i])
|
|
{
|
|
pattern[len++] = i; /* L(k,i) is nonzero */
|
|
tags[i] = k; /* mark i as visited */
|
|
}
|
|
while (len > 0)
|
|
pattern[--top] = pattern[--len];
|
|
}
|
|
}
|
|
|
|
/* compute numerical values kth row of L (a sparse triangular solve) */
|
|
m_diag[k] = y[k]; /* get D(k,k) and clear Y(k) */
|
|
y[k] = 0.0;
|
|
for (; top < size; ++top)
|
|
{
|
|
Index i = pattern[top]; /* pattern[top:n-1] is pattern of L(:,k) */
|
|
Scalar yi = (y[i]); /* get and clear Y(i) */
|
|
y[i] = 0.0;
|
|
Index p2 = Lp[i] + m_nonZerosPerCol[i];
|
|
Index p;
|
|
for (p = Lp[i]; p < p2; ++p)
|
|
y[Li[p]] -= ei_conj(Lx[p]) * (yi);
|
|
Scalar l_ki = yi / m_diag[i]; /* the nonzero entry L(k,i) */
|
|
m_diag[k] -= l_ki * ei_conj(yi);
|
|
Li[p] = k; /* store L(k,i) in column form of L */
|
|
Lx[p] = (l_ki);
|
|
++m_nonZerosPerCol[i]; /* increment count of nonzeros in col i */
|
|
}
|
|
if (m_diag[k] == 0.0)
|
|
{
|
|
ok = false; /* failure, D(k,k) is zero */
|
|
break;
|
|
}
|
|
}
|
|
|
|
ei_aligned_stack_delete(Scalar, y, size);
|
|
ei_aligned_stack_delete(Index, pattern, size);
|
|
ei_aligned_stack_delete(Index, tags, size);
|
|
|
|
return ok; /* success, diagonal of D is all nonzero */
|
|
}
|
|
|
|
/** Computes b = L^-T D^-1 L^-1 b */
|
|
template<typename MatrixType, int Backend>
|
|
template<typename Derived>
|
|
bool SparseLDLT<MatrixType, Backend>::solveInPlace(MatrixBase<Derived> &b) const
|
|
{
|
|
const Index size = m_matrix.rows();
|
|
ei_assert(size==b.rows());
|
|
if (!m_succeeded)
|
|
return false;
|
|
|
|
if (m_matrix.nonZeros()>0) // otherwise L==I
|
|
m_matrix.template triangularView<UnitLower>().solveInPlace(b);
|
|
b = b.cwiseQuotient(m_diag);
|
|
if (m_matrix.nonZeros()>0) // otherwise L==I
|
|
m_matrix.adjoint().template triangularView<UnitUpper>().solveInPlace(b);
|
|
|
|
return true;
|
|
}
|
|
|
|
#endif // EIGEN_SPARSELDLT_H
|