mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-07-20 11:54:27 +08:00
227 lines
7.4 KiB
C++
227 lines
7.4 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
/*
|
|
|
|
* NOTE: This file is the modified version of [s,d,c,z]memory.c files in SuperLU
|
|
|
|
* -- SuperLU routine (version 3.1) --
|
|
* Univ. of California Berkeley, Xerox Palo Alto Research Center,
|
|
* and Lawrence Berkeley National Lab.
|
|
* August 1, 2008
|
|
*
|
|
* Copyright (c) 1994 by Xerox Corporation. All rights reserved.
|
|
*
|
|
* THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
|
|
* EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
|
|
*
|
|
* Permission is hereby granted to use or copy this program for any
|
|
* purpose, provided the above notices are retained on all copies.
|
|
* Permission to modify the code and to distribute modified code is
|
|
* granted, provided the above notices are retained, and a notice that
|
|
* the code was modified is included with the above copyright notice.
|
|
*/
|
|
|
|
#ifndef EIGEN_SPARSELU_MEMORY
|
|
#define EIGEN_SPARSELU_MEMORY
|
|
|
|
namespace Eigen {
|
|
namespace internal {
|
|
|
|
enum { LUNoMarker = 3 };
|
|
enum {emptyIdxLU = -1};
|
|
inline Index LUnumTempV(Index& m, Index& w, Index& t, Index& b)
|
|
{
|
|
return (std::max)(m, (t+b)*w);
|
|
}
|
|
|
|
template< typename Scalar>
|
|
inline Index LUTempSpace(Index&m, Index& w)
|
|
{
|
|
return (2*w + 4 + LUNoMarker) * m * sizeof(Index) + (w + 1) * m * sizeof(Scalar);
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
* Expand the existing storage to accomodate more fill-ins
|
|
* \param vec Valid pointer to the vector to allocate or expand
|
|
* \param[in,out] length At input, contain the current length of the vector that is to be increased. At output, length of the newly allocated vector
|
|
* \param[in] nbElts Current number of elements in the factors
|
|
* \param keep_prev 1: use length and do not expand the vector; 0: compute new_len and expand
|
|
* \param[in,out] num_expansions Number of times the memory has been expanded
|
|
*/
|
|
template <typename Scalar, typename StorageIndex>
|
|
template <typename VectorType>
|
|
Index SparseLUImpl<Scalar,StorageIndex>::expand(VectorType& vec, Index& length, Index nbElts, Index keep_prev, Index& num_expansions)
|
|
{
|
|
|
|
float alpha = 1.5; // Ratio of the memory increase
|
|
Index new_len; // New size of the allocated memory
|
|
|
|
if(num_expansions == 0 || keep_prev)
|
|
new_len = length ; // First time allocate requested
|
|
else
|
|
new_len = (std::max)(length+1,Index(alpha * length));
|
|
|
|
VectorType old_vec; // Temporary vector to hold the previous values
|
|
if (nbElts > 0 )
|
|
old_vec = vec.segment(0,nbElts);
|
|
|
|
//Allocate or expand the current vector
|
|
#ifdef EIGEN_EXCEPTIONS
|
|
try
|
|
#endif
|
|
{
|
|
vec.resize(new_len);
|
|
}
|
|
#ifdef EIGEN_EXCEPTIONS
|
|
catch(std::bad_alloc& )
|
|
#else
|
|
if(!vec.size())
|
|
#endif
|
|
{
|
|
if (!num_expansions)
|
|
{
|
|
// First time to allocate from LUMemInit()
|
|
// Let LUMemInit() deals with it.
|
|
return -1;
|
|
}
|
|
if (keep_prev)
|
|
{
|
|
// In this case, the memory length should not not be reduced
|
|
return new_len;
|
|
}
|
|
else
|
|
{
|
|
// Reduce the size and increase again
|
|
Index tries = 0; // Number of attempts
|
|
do
|
|
{
|
|
alpha = (alpha + 1)/2;
|
|
new_len = (std::max)(length+1,Index(alpha * length));
|
|
#ifdef EIGEN_EXCEPTIONS
|
|
try
|
|
#endif
|
|
{
|
|
vec.resize(new_len);
|
|
}
|
|
#ifdef EIGEN_EXCEPTIONS
|
|
catch(std::bad_alloc& )
|
|
#else
|
|
if (!vec.size())
|
|
#endif
|
|
{
|
|
tries += 1;
|
|
if ( tries > 10) return new_len;
|
|
}
|
|
} while (!vec.size());
|
|
}
|
|
}
|
|
//Copy the previous values to the newly allocated space
|
|
if (nbElts > 0)
|
|
vec.segment(0, nbElts) = old_vec;
|
|
|
|
|
|
length = new_len;
|
|
if(num_expansions) ++num_expansions;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* \brief Allocate various working space for the numerical factorization phase.
|
|
* \param m number of rows of the input matrix
|
|
* \param n number of columns
|
|
* \param annz number of initial nonzeros in the matrix
|
|
* \param lwork if lwork=-1, this routine returns an estimated size of the required memory
|
|
* \param glu persistent data to facilitate multiple factors : will be deleted later ??
|
|
* \param fillratio estimated ratio of fill in the factors
|
|
* \param panel_size Size of a panel
|
|
* \return an estimated size of the required memory if lwork = -1; otherwise, return the size of actually allocated memory when allocation failed, and 0 on success
|
|
* \note Unlike SuperLU, this routine does not support successive factorization with the same pattern and the same row permutation
|
|
*/
|
|
template <typename Scalar, typename StorageIndex>
|
|
Index SparseLUImpl<Scalar,StorageIndex>::memInit(Index m, Index n, Index annz, Index lwork, Index fillratio, Index panel_size, GlobalLU_t& glu)
|
|
{
|
|
Index& num_expansions = glu.num_expansions; //No memory expansions so far
|
|
num_expansions = 0;
|
|
glu.nzumax = glu.nzlumax = (std::min)(fillratio * (annz+1) / n, m) * n; // estimated number of nonzeros in U
|
|
glu.nzlmax = (std::max)(Index(4), fillratio) * (annz+1) / 4; // estimated nnz in L factor
|
|
// Return the estimated size to the user if necessary
|
|
Index tempSpace;
|
|
tempSpace = (2*panel_size + 4 + LUNoMarker) * m * sizeof(Index) + (panel_size + 1) * m * sizeof(Scalar);
|
|
if (lwork == emptyIdxLU)
|
|
{
|
|
Index estimated_size;
|
|
estimated_size = (5 * n + 5) * sizeof(Index) + tempSpace
|
|
+ (glu.nzlmax + glu.nzumax) * sizeof(Index) + (glu.nzlumax+glu.nzumax) * sizeof(Scalar) + n;
|
|
return estimated_size;
|
|
}
|
|
|
|
// Setup the required space
|
|
|
|
// First allocate Integer pointers for L\U factors
|
|
glu.xsup.resize(n+1);
|
|
glu.supno.resize(n+1);
|
|
glu.xlsub.resize(n+1);
|
|
glu.xlusup.resize(n+1);
|
|
glu.xusub.resize(n+1);
|
|
|
|
// Reserve memory for L/U factors
|
|
do
|
|
{
|
|
if( (expand<ScalarVector>(glu.lusup, glu.nzlumax, 0, 0, num_expansions)<0)
|
|
|| (expand<ScalarVector>(glu.ucol, glu.nzumax, 0, 0, num_expansions)<0)
|
|
|| (expand<IndexVector> (glu.lsub, glu.nzlmax, 0, 0, num_expansions)<0)
|
|
|| (expand<IndexVector> (glu.usub, glu.nzumax, 0, 1, num_expansions)<0) )
|
|
{
|
|
//Reduce the estimated size and retry
|
|
glu.nzlumax /= 2;
|
|
glu.nzumax /= 2;
|
|
glu.nzlmax /= 2;
|
|
if (glu.nzlumax < annz ) return glu.nzlumax;
|
|
}
|
|
} while (!glu.lusup.size() || !glu.ucol.size() || !glu.lsub.size() || !glu.usub.size());
|
|
|
|
++num_expansions;
|
|
return 0;
|
|
|
|
} // end LuMemInit
|
|
|
|
/**
|
|
* \brief Expand the existing storage
|
|
* \param vec vector to expand
|
|
* \param[in,out] maxlen On input, previous size of vec (Number of elements to copy ). on output, new size
|
|
* \param nbElts current number of elements in the vector.
|
|
* \param memtype Type of the element to expand
|
|
* \param num_expansions Number of expansions
|
|
* \return 0 on success, > 0 size of the memory allocated so far
|
|
*/
|
|
template <typename Scalar, typename StorageIndex>
|
|
template <typename VectorType>
|
|
Index SparseLUImpl<Scalar,StorageIndex>::memXpand(VectorType& vec, Index& maxlen, Index nbElts, MemType memtype, Index& num_expansions)
|
|
{
|
|
Index failed_size;
|
|
if (memtype == USUB)
|
|
failed_size = this->expand<VectorType>(vec, maxlen, nbElts, 1, num_expansions);
|
|
else
|
|
failed_size = this->expand<VectorType>(vec, maxlen, nbElts, 0, num_expansions);
|
|
|
|
if (failed_size)
|
|
return failed_size;
|
|
|
|
return 0 ;
|
|
}
|
|
|
|
} // end namespace internal
|
|
|
|
} // end namespace Eigen
|
|
#endif // EIGEN_SPARSELU_MEMORY
|