Mehdi Goli 00f32752f7 [SYCL] Rebasing the SYCL support branch on top of the Einge upstream master branch.
* Unifying all loadLocalTile from lhs and rhs to an extract_block function.
* Adding get_tensor operation which was missing in TensorContractionMapper.
* Adding the -D method missing from cmake for Disable_Skinny Contraction operation.
* Wrapping all the indices in TensorScanSycl into Scan parameter struct.
* Fixing typo in Device SYCL
* Unifying load to private register for tall/skinny no shared
* Unifying load to vector tile for tensor-vector/vector-tensor operation
* Removing all the LHS/RHS class for extracting data from global
* Removing Outputfunction from TensorContractionSkinnyNoshared.
* Combining the local memory version of tall/skinny and normal tensor contraction into one kernel.
* Combining the no-local memory version of tall/skinny and normal tensor contraction into one kernel.
* Combining General Tensor-Vector and VectorTensor contraction into one kernel.
* Making double buffering optional for Tensor contraction when local memory is version is used.
* Modifying benchmark to accept custom Reduction Sizes
* Disabling AVX optimization for SYCL backend on the host to allow SSE optimization to the host
* Adding Test for SYCL
* Modifying SYCL CMake
2019-11-28 10:08:54 +00:00

63 lines
2.5 KiB
C++

#include <iostream>
#define EIGEN_USE_SYCL
#include <unsupported/Eigen/CXX11/Tensor>
using Eigen::array;
using Eigen::SyclDevice;
using Eigen::Tensor;
using Eigen::TensorMap;
int main()
{
using DataType = float;
using IndexType = int64_t;
constexpr auto DataLayout = Eigen::RowMajor;
auto devices = Eigen::get_sycl_supported_devices();
const auto device_selector = *devices.begin();
Eigen::QueueInterface queueInterface(device_selector);
auto sycl_device = Eigen::SyclDevice(&queueInterface);
// create the tensors to be used in the operation
IndexType sizeDim1 = 3;
IndexType sizeDim2 = 3;
IndexType sizeDim3 = 3;
array<IndexType, 3> tensorRange = {{sizeDim1, sizeDim2, sizeDim3}};
// initialize the tensors with the data we want manipulate to
Tensor<DataType, 3,DataLayout, IndexType> in1(tensorRange);
Tensor<DataType, 3,DataLayout, IndexType> in2(tensorRange);
Tensor<DataType, 3,DataLayout, IndexType> out(tensorRange);
// set up some random data in the tensors to be multiplied
in1 = in1.random();
in2 = in2.random();
// allocate memory for the tensors
DataType * gpu_in1_data = static_cast<DataType*>(sycl_device.allocate(in1.size()*sizeof(DataType)));
DataType * gpu_in2_data = static_cast<DataType*>(sycl_device.allocate(in2.size()*sizeof(DataType)));
DataType * gpu_out_data = static_cast<DataType*>(sycl_device.allocate(out.size()*sizeof(DataType)));
//
TensorMap<Tensor<DataType, 3, DataLayout, IndexType>> gpu_in1(gpu_in1_data, tensorRange);
TensorMap<Tensor<DataType, 3, DataLayout, IndexType>> gpu_in2(gpu_in2_data, tensorRange);
TensorMap<Tensor<DataType, 3, DataLayout, IndexType>> gpu_out(gpu_out_data, tensorRange);
// copy the memory to the device and do the c=a*b calculation
sycl_device.memcpyHostToDevice(gpu_in1_data, in1.data(),(in1.size())*sizeof(DataType));
sycl_device.memcpyHostToDevice(gpu_in2_data, in2.data(),(in2.size())*sizeof(DataType));
gpu_out.device(sycl_device) = gpu_in1 * gpu_in2;
sycl_device.memcpyDeviceToHost(out.data(), gpu_out_data,(out.size())*sizeof(DataType));
sycl_device.synchronize();
// print out the results
for (IndexType i = 0; i < sizeDim1; ++i) {
for (IndexType j = 0; j < sizeDim2; ++j) {
for (IndexType k = 0; k < sizeDim3; ++k) {
std::cout << "device_out" << "(" << i << ", " << j << ", " << k << ") : " << out(i,j,k)
<< " vs host_out" << "(" << i << ", " << j << ", " << k << ") : " << in1(i,j,k) * in2(i,j,k) << "\n";
}
}
}
printf("c=a*b Done\n");
}