mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-08-03 18:50:39 +08:00
164 lines
5.0 KiB
C++
164 lines
5.0 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#ifndef EIGEN_BASIC_PRECONDITIONERS_H
|
|
#define EIGEN_BASIC_PRECONDITIONERS_H
|
|
|
|
namespace Eigen {
|
|
|
|
/** \ingroup IterativeLinearSolvers_Module
|
|
* \brief A preconditioner based on the digonal entries
|
|
*
|
|
* This class allows to approximately solve for A.x = b problems assuming A is a diagonal matrix.
|
|
* In other words, this preconditioner neglects all off diagonal entries and, in Eigen's language, solves for:
|
|
* \code
|
|
* A.diagonal().asDiagonal() . x = b
|
|
* \endcode
|
|
*
|
|
* \tparam _Scalar the type of the scalar.
|
|
*
|
|
* This preconditioner is suitable for both selfadjoint and general problems.
|
|
* The diagonal entries are pre-inverted and stored into a dense vector.
|
|
*
|
|
* \note A variant that has yet to be implemented would attempt to preserve the norm of each column.
|
|
*
|
|
*/
|
|
template <typename _Scalar>
|
|
class DiagonalPreconditioner
|
|
{
|
|
typedef _Scalar Scalar;
|
|
typedef Matrix<Scalar,Dynamic,1> Vector;
|
|
typedef typename Vector::Index Index;
|
|
|
|
public:
|
|
typedef Matrix<Scalar,Dynamic,Dynamic> MatrixType;
|
|
|
|
DiagonalPreconditioner() : m_isInitialized(false) {}
|
|
|
|
template<typename MatrixType>
|
|
DiagonalPreconditioner(const MatrixType& mat) : m_invdiag(mat.cols())
|
|
{
|
|
compute(mat);
|
|
}
|
|
|
|
Index rows() const { return m_invdiag.size(); }
|
|
Index cols() const { return m_invdiag.size(); }
|
|
|
|
template<typename MatrixType>
|
|
DiagonalPreconditioner& analyzePattern(const MatrixType& )
|
|
{
|
|
return *this;
|
|
}
|
|
|
|
template<typename MatrixType>
|
|
DiagonalPreconditioner& factorize(const MatrixType& mat)
|
|
{
|
|
m_invdiag.resize(mat.cols());
|
|
for(int j=0; j<mat.outerSize(); ++j)
|
|
{
|
|
typename MatrixType::InnerIterator it(mat,j);
|
|
while(it && it.index()!=j) ++it;
|
|
if(it && it.index()==j)
|
|
m_invdiag(j) = Scalar(1)/it.value();
|
|
else
|
|
m_invdiag(j) = 0;
|
|
}
|
|
m_isInitialized = true;
|
|
return *this;
|
|
}
|
|
|
|
template<typename MatrixType>
|
|
DiagonalPreconditioner& compute(const MatrixType& mat)
|
|
{
|
|
return factorize(mat);
|
|
}
|
|
|
|
template<typename Rhs, typename Dest>
|
|
void _solve(const Rhs& b, Dest& x) const
|
|
{
|
|
x = m_invdiag.array() * b.array() ;
|
|
}
|
|
|
|
template<typename Rhs> inline const internal::solve_retval<DiagonalPreconditioner, Rhs>
|
|
solve(const MatrixBase<Rhs>& b) const
|
|
{
|
|
eigen_assert(m_isInitialized && "DiagonalPreconditioner is not initialized.");
|
|
eigen_assert(m_invdiag.size()==b.rows()
|
|
&& "DiagonalPreconditioner::solve(): invalid number of rows of the right hand side matrix b");
|
|
return internal::solve_retval<DiagonalPreconditioner, Rhs>(*this, b.derived());
|
|
}
|
|
|
|
protected:
|
|
Vector m_invdiag;
|
|
bool m_isInitialized;
|
|
};
|
|
|
|
namespace internal {
|
|
|
|
template<typename _MatrixType, typename Rhs>
|
|
struct solve_retval<DiagonalPreconditioner<_MatrixType>, Rhs>
|
|
: solve_retval_base<DiagonalPreconditioner<_MatrixType>, Rhs>
|
|
{
|
|
typedef DiagonalPreconditioner<_MatrixType> Dec;
|
|
EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
|
|
|
|
template<typename Dest> void evalTo(Dest& dst) const
|
|
{
|
|
dec()._solve(rhs(),dst);
|
|
}
|
|
};
|
|
|
|
}
|
|
|
|
/** \ingroup IterativeLinearSolvers_Module
|
|
* \brief A naive preconditioner which approximates any matrix as the identity matrix
|
|
*
|
|
* \sa class DiagonalPreconditioner
|
|
*/
|
|
class IdentityPreconditioner
|
|
{
|
|
public:
|
|
|
|
IdentityPreconditioner() {}
|
|
|
|
template<typename MatrixType>
|
|
IdentityPreconditioner(const MatrixType& ) {}
|
|
|
|
template<typename MatrixType>
|
|
IdentityPreconditioner& analyzePattern(const MatrixType& ) { return *this; }
|
|
|
|
template<typename MatrixType>
|
|
IdentityPreconditioner& factorize(const MatrixType& ) { return *this; }
|
|
|
|
template<typename MatrixType>
|
|
IdentityPreconditioner& compute(const MatrixType& ) { return *this; }
|
|
|
|
template<typename Rhs>
|
|
inline const Rhs& solve(const Rhs& b) const { return b; }
|
|
};
|
|
|
|
} // end namespace Eigen
|
|
|
|
#endif // EIGEN_BASIC_PRECONDITIONERS_H
|