eigen/Eigen/src/Core/DenseBase.h
2010-02-20 15:26:02 +01:00

515 lines
23 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2008-2010 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_DENSEBASE_H
#define EIGEN_DENSEBASE_H
/** \class DenseBase
*
* \brief Base class for all dense matrices, vectors, and arrays
*
* This class is the base that is inherited by all dense objects (matrix, vector, arrays,
* and related expression types). The common Eigen API for dense objects is contained in this class.
*
* \param Derived is the derived type, e.g., a matrix type or an expression.
*/
template<typename Derived> class DenseBase
#ifndef EIGEN_PARSED_BY_DOXYGEN
: public ei_special_scalar_op_base<Derived,typename ei_traits<Derived>::Scalar,
typename NumTraits<typename ei_traits<Derived>::Scalar>::Real>
#else
: public EigenBase<Derived>
#endif // not EIGEN_PARSED_BY_DOXYGEN
{
public:
#ifndef EIGEN_PARSED_BY_DOXYGEN
using ei_special_scalar_op_base<Derived,typename ei_traits<Derived>::Scalar,
typename NumTraits<typename ei_traits<Derived>::Scalar>::Real>::operator*;
class InnerIterator;
typedef typename ei_traits<Derived>::Scalar Scalar;
typedef typename ei_packet_traits<Scalar>::type PacketScalar;
using EigenBase<Derived>::derived;
using EigenBase<Derived>::const_cast_derived;
#endif // not EIGEN_PARSED_BY_DOXYGEN
enum {
RowsAtCompileTime = ei_traits<Derived>::RowsAtCompileTime,
/**< The number of rows at compile-time. This is just a copy of the value provided
* by the \a Derived type. If a value is not known at compile-time,
* it is set to the \a Dynamic constant.
* \sa MatrixBase::rows(), MatrixBase::cols(), ColsAtCompileTime, SizeAtCompileTime */
ColsAtCompileTime = ei_traits<Derived>::ColsAtCompileTime,
/**< The number of columns at compile-time. This is just a copy of the value provided
* by the \a Derived type. If a value is not known at compile-time,
* it is set to the \a Dynamic constant.
* \sa MatrixBase::rows(), MatrixBase::cols(), RowsAtCompileTime, SizeAtCompileTime */
SizeAtCompileTime = (ei_size_at_compile_time<ei_traits<Derived>::RowsAtCompileTime,
ei_traits<Derived>::ColsAtCompileTime>::ret),
/**< This is equal to the number of coefficients, i.e. the number of
* rows times the number of columns, or to \a Dynamic if this is not
* known at compile-time. \sa RowsAtCompileTime, ColsAtCompileTime */
MaxRowsAtCompileTime = ei_traits<Derived>::MaxRowsAtCompileTime,
/**< This value is equal to the maximum possible number of rows that this expression
* might have. If this expression might have an arbitrarily high number of rows,
* this value is set to \a Dynamic.
*
* This value is useful to know when evaluating an expression, in order to determine
* whether it is possible to avoid doing a dynamic memory allocation.
*
* \sa RowsAtCompileTime, MaxColsAtCompileTime, MaxSizeAtCompileTime
*/
MaxColsAtCompileTime = ei_traits<Derived>::MaxColsAtCompileTime,
/**< This value is equal to the maximum possible number of columns that this expression
* might have. If this expression might have an arbitrarily high number of columns,
* this value is set to \a Dynamic.
*
* This value is useful to know when evaluating an expression, in order to determine
* whether it is possible to avoid doing a dynamic memory allocation.
*
* \sa ColsAtCompileTime, MaxRowsAtCompileTime, MaxSizeAtCompileTime
*/
MaxSizeAtCompileTime = (ei_size_at_compile_time<ei_traits<Derived>::MaxRowsAtCompileTime,
ei_traits<Derived>::MaxColsAtCompileTime>::ret),
/**< This value is equal to the maximum possible number of coefficients that this expression
* might have. If this expression might have an arbitrarily high number of coefficients,
* this value is set to \a Dynamic.
*
* This value is useful to know when evaluating an expression, in order to determine
* whether it is possible to avoid doing a dynamic memory allocation.
*
* \sa SizeAtCompileTime, MaxRowsAtCompileTime, MaxColsAtCompileTime
*/
IsVectorAtCompileTime = ei_traits<Derived>::RowsAtCompileTime == 1
|| ei_traits<Derived>::ColsAtCompileTime == 1,
/**< This is set to true if either the number of rows or the number of
* columns is known at compile-time to be equal to 1. Indeed, in that case,
* we are dealing with a column-vector (if there is only one column) or with
* a row-vector (if there is only one row). */
Flags = ei_traits<Derived>::Flags,
/**< This stores expression \ref flags flags which may or may not be inherited by new expressions
* constructed from this one. See the \ref flags "list of flags".
*/
CoeffReadCost = ei_traits<Derived>::CoeffReadCost,
/**< This is a rough measure of how expensive it is to read one coefficient from
* this expression.
*/
#ifndef EIGEN_PARSED_BY_DOXYGEN
_HasDirectAccess = (int(Flags)&DirectAccessBit) ? 1 : 0 // workaround sunCC
#endif
};
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** This is the "real scalar" type; if the \a Scalar type is already real numbers
* (e.g. int, float or double) then \a RealScalar is just the same as \a Scalar. If
* \a Scalar is \a std::complex<T> then RealScalar is \a T.
*
* \sa class NumTraits
*/
typedef typename NumTraits<Scalar>::Real RealScalar;
#endif // not EIGEN_PARSED_BY_DOXYGEN
/** \returns the number of rows. \sa cols(), RowsAtCompileTime */
inline int rows() const { return derived().rows(); }
/** \returns the number of columns. \sa rows(), ColsAtCompileTime*/
inline int cols() const { return derived().cols(); }
/** \returns the number of coefficients, which is rows()*cols().
* \sa rows(), cols(), SizeAtCompileTime. */
inline int size() const { return rows() * cols(); }
/** \returns the number of nonzero coefficients which is in practice the number
* of stored coefficients. */
inline int nonZeros() const { return size(); }
/** \returns true if either the number of rows or the number of columns is equal to 1.
* In other words, this function returns
* \code rows()==1 || cols()==1 \endcode
* \sa rows(), cols(), IsVectorAtCompileTime. */
inline bool isVector() const { return rows()==1 || cols()==1; }
/** \returns the size of the storage major dimension,
* i.e., the number of columns for a columns major matrix, and the number of rows otherwise */
int outerSize() const { return (int(Flags)&RowMajorBit) ? this->rows() : this->cols(); }
/** \returns the size of the inner dimension according to the storage order,
* i.e., the number of rows for a columns major matrix, and the number of cols otherwise */
int innerSize() const { return (int(Flags)&RowMajorBit) ? this->cols() : this->rows(); }
/** Only plain matrices, not expressions may be resized; therefore the only useful resize method is
* Matrix::resize(). The present method only asserts that the new size equals the old size, and does
* nothing else.
*/
void resize(int size)
{
ei_assert(size == this->size()
&& "MatrixBase::resize() does not actually allow to resize.");
}
/** Only plain matrices, not expressions may be resized; therefore the only useful resize method is
* Matrix::resize(). The present method only asserts that the new size equals the old size, and does
* nothing else.
*/
void resize(int rows, int cols)
{
ei_assert(rows == this->rows() && cols == this->cols()
&& "MatrixBase::resize() does not actually allow to resize.");
}
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** \internal the return type of coeff()
*/
typedef typename ei_meta_if<_HasDirectAccess, const Scalar&, Scalar>::ret CoeffReturnType;
/** \internal Represents a matrix with all coefficients equal to one another*/
typedef CwiseNullaryOp<ei_scalar_constant_op<Scalar>,Derived> ConstantReturnType;
/** \internal Represents a vector with linearly spaced coefficients that allows sequential access only. */
typedef CwiseNullaryOp<ei_linspaced_op<Scalar,false>,Derived> SequentialLinSpacedReturnType;
/** \internal Represents a vector with linearly spaced coefficients that allows random access. */
typedef CwiseNullaryOp<ei_linspaced_op<Scalar,true>,Derived> RandomAccessLinSpacedReturnType;
/** \internal the return type of MatrixBase::eigenvalues() */
typedef Matrix<typename NumTraits<typename ei_traits<Derived>::Scalar>::Real, ei_traits<Derived>::ColsAtCompileTime, 1> EigenvaluesReturnType;
/** \internal expression type of a column */
typedef Block<Derived, ei_traits<Derived>::RowsAtCompileTime, 1> ColXpr;
/** \internal expression type of a column */
typedef Block<Derived, 1, ei_traits<Derived>::ColsAtCompileTime> RowXpr;
#endif // not EIGEN_PARSED_BY_DOXYGEN
/** Copies \a other into *this. \returns a reference to *this. */
template<typename OtherDerived>
Derived& operator=(const DenseBase<OtherDerived>& other);
/** Special case of the template operator=, in order to prevent the compiler
* from generating a default operator= (issue hit with g++ 4.1)
*/
Derived& operator=(const DenseBase& other);
template<typename OtherDerived>
Derived& operator=(const EigenBase<OtherDerived> &other);
template<typename OtherDerived>
Derived& operator+=(const EigenBase<OtherDerived> &other);
template<typename OtherDerived>
Derived& operator-=(const EigenBase<OtherDerived> &other);
template<typename OtherDerived>
Derived& operator=(const ReturnByValue<OtherDerived>& func);
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** Copies \a other into *this without evaluating other. \returns a reference to *this. */
template<typename OtherDerived>
Derived& lazyAssign(const DenseBase<OtherDerived>& other);
#endif // not EIGEN_PARSED_BY_DOXYGEN
CommaInitializer<Derived> operator<< (const Scalar& s);
template<unsigned int Added,unsigned int Removed>
const Flagged<Derived, Added, Removed> flagged() const;
template<typename OtherDerived>
CommaInitializer<Derived> operator<< (const DenseBase<OtherDerived>& other);
const CoeffReturnType coeff(int row, int col) const;
const CoeffReturnType operator()(int row, int col) const;
Scalar& coeffRef(int row, int col);
Scalar& operator()(int row, int col);
const CoeffReturnType coeff(int index) const;
const CoeffReturnType operator[](int index) const;
const CoeffReturnType operator()(int index) const;
Scalar& coeffRef(int index);
Scalar& operator[](int index);
Scalar& operator()(int index);
#ifndef EIGEN_PARSED_BY_DOXYGEN
template<typename OtherDerived>
void copyCoeff(int row, int col, const DenseBase<OtherDerived>& other);
template<typename OtherDerived>
void copyCoeff(int index, const DenseBase<OtherDerived>& other);
template<typename OtherDerived, int StoreMode, int LoadMode>
void copyPacket(int row, int col, const DenseBase<OtherDerived>& other);
template<typename OtherDerived, int StoreMode, int LoadMode>
void copyPacket(int index, const DenseBase<OtherDerived>& other);
#endif // not EIGEN_PARSED_BY_DOXYGEN
template<int LoadMode>
PacketScalar packet(int row, int col) const;
template<int StoreMode>
void writePacket(int row, int col, const PacketScalar& x);
template<int LoadMode>
PacketScalar packet(int index) const;
template<int StoreMode>
void writePacket(int index, const PacketScalar& x);
Eigen::Transpose<Derived> transpose();
const Eigen::Transpose<Derived> transpose() const;
void transposeInPlace();
#ifndef EIGEN_NO_DEBUG
protected:
template<typename OtherDerived>
void checkTransposeAliasing(const OtherDerived& other) const;
public:
#endif
RowXpr row(int i);
const RowXpr row(int i) const;
ColXpr col(int i);
const ColXpr col(int i) const;
typename BlockReturnType<Derived>::Type block(int startRow, int startCol, int blockRows, int blockCols);
const typename BlockReturnType<Derived>::Type
block(int startRow, int startCol, int blockRows, int blockCols) const;
VectorBlock<Derived> segment(int start, int size);
const VectorBlock<Derived> segment(int start, int size) const;
VectorBlock<Derived> head(int size);
const VectorBlock<Derived> head(int size) const;
VectorBlock<Derived> tail(int size);
const VectorBlock<Derived> tail(int size) const;
typename BlockReturnType<Derived>::Type corner(CornerType type, int cRows, int cCols);
const typename BlockReturnType<Derived>::Type corner(CornerType type, int cRows, int cCols) const;
template<int BlockRows, int BlockCols>
typename BlockReturnType<Derived, BlockRows, BlockCols>::Type block(int startRow, int startCol);
template<int BlockRows, int BlockCols>
const typename BlockReturnType<Derived, BlockRows, BlockCols>::Type block(int startRow, int startCol) const;
template<int CRows, int CCols>
typename BlockReturnType<Derived, CRows, CCols>::Type corner(CornerType type);
template<int CRows, int CCols>
const typename BlockReturnType<Derived, CRows, CCols>::Type corner(CornerType type) const;
template<int Size> VectorBlock<Derived,Size> head(void);
template<int Size> const VectorBlock<Derived,Size> head() const;
template<int Size> VectorBlock<Derived,Size> tail();
template<int Size> const VectorBlock<Derived,Size> tail() const;
template<int Size> VectorBlock<Derived,Size> segment(int start);
template<int Size> const VectorBlock<Derived,Size> segment(int start) const;
Diagonal<Derived,0> diagonal();
const Diagonal<Derived,0> diagonal() const;
template<int Index> Diagonal<Derived,Index> diagonal();
template<int Index> const Diagonal<Derived,Index> diagonal() const;
Diagonal<Derived, Dynamic> diagonal(int index);
const Diagonal<Derived, Dynamic> diagonal(int index) const;
template<unsigned int Mode> TriangularView<Derived, Mode> part();
template<unsigned int Mode> const TriangularView<Derived, Mode> part() const;
template<unsigned int Mode> TriangularView<Derived, Mode> triangularView();
template<unsigned int Mode> const TriangularView<Derived, Mode> triangularView() const;
template<unsigned int UpLo> SelfAdjointView<Derived, UpLo> selfadjointView();
template<unsigned int UpLo> const SelfAdjointView<Derived, UpLo> selfadjointView() const;
static const ConstantReturnType
Constant(int rows, int cols, const Scalar& value);
static const ConstantReturnType
Constant(int size, const Scalar& value);
static const ConstantReturnType
Constant(const Scalar& value);
static const SequentialLinSpacedReturnType
LinSpaced(Sequential_t, const Scalar& low, const Scalar& high, int size);
static const RandomAccessLinSpacedReturnType
LinSpaced(const Scalar& low, const Scalar& high, int size);
template<typename CustomNullaryOp>
static const CwiseNullaryOp<CustomNullaryOp, Derived>
NullaryExpr(int rows, int cols, const CustomNullaryOp& func);
template<typename CustomNullaryOp>
static const CwiseNullaryOp<CustomNullaryOp, Derived>
NullaryExpr(int size, const CustomNullaryOp& func);
template<typename CustomNullaryOp>
static const CwiseNullaryOp<CustomNullaryOp, Derived>
NullaryExpr(const CustomNullaryOp& func);
static const ConstantReturnType Zero(int rows, int cols);
static const ConstantReturnType Zero(int size);
static const ConstantReturnType Zero();
static const ConstantReturnType Ones(int rows, int cols);
static const ConstantReturnType Ones(int size);
static const ConstantReturnType Ones();
void fill(const Scalar& value);
Derived& setConstant(const Scalar& value);
Derived& setLinSpaced(const Scalar& low, const Scalar& high, int size);
Derived& setZero();
Derived& setOnes();
Derived& setRandom();
template<typename OtherDerived>
bool isApprox(const DenseBase<OtherDerived>& other,
RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;
bool isMuchSmallerThan(const RealScalar& other,
RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;
template<typename OtherDerived>
bool isMuchSmallerThan(const DenseBase<OtherDerived>& other,
RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;
bool isApproxToConstant(const Scalar& value, RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;
bool isConstant(const Scalar& value, RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;
bool isZero(RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;
bool isOnes(RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;
inline Derived& operator*=(const Scalar& other);
inline Derived& operator/=(const Scalar& other);
/** \returns the matrix or vector obtained by evaluating this expression.
*
* Notice that in the case of a plain matrix or vector (not an expression) this function just returns
* a const reference, in order to avoid a useless copy.
*/
EIGEN_STRONG_INLINE const typename ei_eval<Derived>::type eval() const
{ return typename ei_eval<Derived>::type(derived()); }
template<typename OtherDerived>
void swap(DenseBase<OtherDerived> EIGEN_REF_TO_TEMPORARY other);
/** \returns number of elements to skip to pass from one row (resp. column) to another
* for a row-major (resp. column-major) matrix.
* Combined with coeffRef() and the \ref flags flags, it allows a direct access to the data
* of the underlying matrix.
*/
inline int stride() const { return derived().stride(); }
inline const NestByValue<Derived> nestByValue() const;
inline const ForceAlignedAccess<Derived> forceAlignedAccess() const;
inline ForceAlignedAccess<Derived> forceAlignedAccess();
template<bool Enable> inline const typename ei_meta_if<Enable,ForceAlignedAccess<Derived>,Derived&>::ret forceAlignedAccessIf() const;
template<bool Enable> inline typename ei_meta_if<Enable,ForceAlignedAccess<Derived>,Derived&>::ret forceAlignedAccessIf();
Scalar sum() const;
Scalar mean() const;
Scalar trace() const;
Scalar prod() const;
typename ei_traits<Derived>::Scalar minCoeff() const;
typename ei_traits<Derived>::Scalar maxCoeff() const;
typename ei_traits<Derived>::Scalar minCoeff(int* row, int* col) const;
typename ei_traits<Derived>::Scalar maxCoeff(int* row, int* col) const;
typename ei_traits<Derived>::Scalar minCoeff(int* index) const;
typename ei_traits<Derived>::Scalar maxCoeff(int* index) const;
template<typename BinaryOp>
typename ei_result_of<BinaryOp(typename ei_traits<Derived>::Scalar)>::type
redux(const BinaryOp& func) const;
template<typename Visitor>
void visit(Visitor& func) const;
inline const WithFormat<Derived> format(const IOFormat& fmt) const;
/////////// Array module ///////////
bool all(void) const;
bool any(void) const;
int count() const;
const VectorwiseOp<Derived,Horizontal> rowwise() const;
VectorwiseOp<Derived,Horizontal> rowwise();
const VectorwiseOp<Derived,Vertical> colwise() const;
VectorwiseOp<Derived,Vertical> colwise();
static const CwiseNullaryOp<ei_scalar_random_op<Scalar>,Derived> Random(int rows, int cols);
static const CwiseNullaryOp<ei_scalar_random_op<Scalar>,Derived> Random(int size);
static const CwiseNullaryOp<ei_scalar_random_op<Scalar>,Derived> Random();
template<typename ThenDerived,typename ElseDerived>
const Select<Derived,ThenDerived,ElseDerived>
select(const DenseBase<ThenDerived>& thenMatrix,
const DenseBase<ElseDerived>& elseMatrix) const;
template<typename ThenDerived>
inline const Select<Derived,ThenDerived, typename ThenDerived::ConstantReturnType>
select(const DenseBase<ThenDerived>& thenMatrix, typename ThenDerived::Scalar elseScalar) const;
template<typename ElseDerived>
inline const Select<Derived, typename ElseDerived::ConstantReturnType, ElseDerived >
select(typename ElseDerived::Scalar thenScalar, const DenseBase<ElseDerived>& elseMatrix) const;
template<int p> RealScalar lpNorm() const;
template<int RowFactor, int ColFactor>
const Replicate<Derived,RowFactor,ColFactor> replicate() const;
const Replicate<Derived,Dynamic,Dynamic> replicate(int rowFacor,int colFactor) const;
Eigen::Reverse<Derived, BothDirections> reverse();
const Eigen::Reverse<Derived, BothDirections> reverse() const;
void reverseInPlace();
#ifdef EIGEN_DENSEBASE_PLUGIN
#include EIGEN_DENSEBASE_PLUGIN
#endif
// disable the use of evalTo for dense objects with a nice compilation error
template<typename Dest> inline void evalTo(Dest& dst) const
{
EIGEN_STATIC_ASSERT((ei_is_same_type<Dest,void>::ret),THE_EVAL_EVALTO_FUNCTION_SHOULD_NEVER_BE_CALLED_FOR_DENSE_OBJECTS);
}
protected:
/** Default constructor. Do nothing. */
DenseBase()
{
/* Just checks for self-consistency of the flags.
* Only do it when debugging Eigen, as this borders on paranoiac and could slow compilation down
*/
#ifdef EIGEN_INTERNAL_DEBUGGING
EIGEN_STATIC_ASSERT(ei_are_flags_consistent<Flags>::ret,
INVALID_MATRIXBASE_TEMPLATE_PARAMETERS)
#endif
}
private:
explicit DenseBase(int);
DenseBase(int,int);
template<typename OtherDerived> explicit DenseBase(const DenseBase<OtherDerived>&);
};
#endif // EIGEN_DENSEBASE_H