mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-05-11 23:39:03 +08:00
408 lines
14 KiB
C++
408 lines
14 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra. Eigen itself is part of the KDE project.
|
|
//
|
|
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
|
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
|
// Copyright (C) 2009 Kenneth Riddile <kfriddile@yahoo.com>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#ifndef EIGEN_MEMORY_H
|
|
#define EIGEN_MEMORY_H
|
|
|
|
#ifdef __linux
|
|
// it seems we cannot assume posix_memalign is defined in the stdlib header
|
|
extern "C" int posix_memalign (void **, size_t, size_t) throw ();
|
|
#endif
|
|
|
|
/** \internal allocates \a size bytes. The returned pointer is guaranteed to have 16 bytes alignment.
|
|
* On allocation error, the returned pointer is undefined, but if exceptions are enabled then a std::bad_alloc is thrown.
|
|
*/
|
|
inline void* ei_aligned_malloc(size_t size)
|
|
{
|
|
#ifdef EIGEN_NO_MALLOC
|
|
ei_assert(false && "heap allocation is forbidden (EIGEN_NO_MALLOC is defined)");
|
|
#endif
|
|
|
|
void *result;
|
|
#ifdef __linux
|
|
#ifdef EIGEN_EXCEPTIONS
|
|
const int failed =
|
|
#endif
|
|
posix_memalign(&result, 16, size);
|
|
#else
|
|
#ifdef _MSC_VER
|
|
result = _aligned_malloc(size, 16);
|
|
#elif defined(__APPLE__)
|
|
result = malloc(size); // Apple's malloc() already returns 16-byte-aligned ptrs
|
|
#else
|
|
result = _mm_malloc(size, 16);
|
|
#endif
|
|
#ifdef EIGEN_EXCEPTIONS
|
|
const int failed = (result == 0);
|
|
#endif
|
|
#endif
|
|
#ifdef EIGEN_EXCEPTIONS
|
|
if(failed)
|
|
throw std::bad_alloc();
|
|
#endif
|
|
return result;
|
|
}
|
|
|
|
/** allocates \a size bytes. If Align is true, then the returned ptr is 16-byte-aligned.
|
|
* On allocation error, the returned pointer is undefined, but if exceptions are enabled then a std::bad_alloc is thrown.
|
|
*/
|
|
template<bool Align> inline void* ei_conditional_aligned_malloc(size_t size)
|
|
{
|
|
return ei_aligned_malloc(size);
|
|
}
|
|
|
|
template<> inline void* ei_conditional_aligned_malloc<false>(size_t size)
|
|
{
|
|
void *void_result = malloc(size);
|
|
#ifdef EIGEN_EXCEPTIONS
|
|
if(!void_result) throw std::bad_alloc();
|
|
#endif
|
|
return void_result;
|
|
}
|
|
|
|
/** allocates \a size objects of type T. The returned pointer is guaranteed to have 16 bytes alignment.
|
|
* On allocation error, the returned pointer is undefined, but if exceptions are enabled then a std::bad_alloc is thrown.
|
|
* The default constructor of T is called.
|
|
*/
|
|
template<typename T> inline T* ei_aligned_new(size_t size)
|
|
{
|
|
void *void_result = ei_aligned_malloc(sizeof(T)*size);
|
|
return ::new(void_result) T[size];
|
|
}
|
|
|
|
template<typename T, bool Align> inline T* ei_conditional_aligned_new(size_t size)
|
|
{
|
|
void *void_result = ei_conditional_aligned_malloc<Align>(sizeof(T)*size);
|
|
return ::new(void_result) T[size];
|
|
}
|
|
|
|
/** \internal free memory allocated with ei_aligned_malloc
|
|
*/
|
|
inline void ei_aligned_free(void *ptr)
|
|
{
|
|
#if defined(__linux)
|
|
free(ptr);
|
|
#elif defined(__APPLE__)
|
|
free(ptr);
|
|
#elif defined(_MSC_VER)
|
|
_aligned_free(ptr);
|
|
#else
|
|
_mm_free(ptr);
|
|
#endif
|
|
}
|
|
|
|
/** \internal free memory allocated with ei_conditional_aligned_malloc
|
|
*/
|
|
template<bool Align> inline void ei_conditional_aligned_free(void *ptr)
|
|
{
|
|
ei_aligned_free(ptr);
|
|
}
|
|
|
|
template<> inline void ei_conditional_aligned_free<false>(void *ptr)
|
|
{
|
|
free(ptr);
|
|
}
|
|
|
|
/** \internal delete the elements of an array.
|
|
* The \a size parameters tells on how many objects to call the destructor of T.
|
|
*/
|
|
template<typename T> inline void ei_delete_elements_of_array(T *ptr, size_t size)
|
|
{
|
|
// always destruct an array starting from the end.
|
|
while(size) ptr[--size].~T();
|
|
}
|
|
|
|
/** \internal delete objects constructed with ei_aligned_new
|
|
* The \a size parameters tells on how many objects to call the destructor of T.
|
|
*/
|
|
template<typename T> inline void ei_aligned_delete(T *ptr, size_t size)
|
|
{
|
|
ei_delete_elements_of_array<T>(ptr, size);
|
|
ei_aligned_free(ptr);
|
|
}
|
|
|
|
/** \internal delete objects constructed with ei_conditional_aligned_new
|
|
* The \a size parameters tells on how many objects to call the destructor of T.
|
|
*/
|
|
template<typename T, bool Align> inline void ei_conditional_aligned_delete(T *ptr, size_t size)
|
|
{
|
|
ei_delete_elements_of_array<T>(ptr, size);
|
|
ei_conditional_aligned_free<Align>(ptr);
|
|
}
|
|
|
|
/** \internal \returns the number of elements which have to be skipped such that data are 16 bytes aligned */
|
|
template<typename Scalar>
|
|
inline static int ei_alignmentOffset(const Scalar* ptr, int maxOffset)
|
|
{
|
|
typedef typename ei_packet_traits<Scalar>::type Packet;
|
|
const int PacketSize = ei_packet_traits<Scalar>::size;
|
|
const int PacketAlignedMask = PacketSize-1;
|
|
const bool Vectorized = PacketSize>1;
|
|
return Vectorized
|
|
? std::min<int>( (PacketSize - (int((size_t(ptr)/sizeof(Scalar))) & PacketAlignedMask))
|
|
& PacketAlignedMask, maxOffset)
|
|
: 0;
|
|
}
|
|
|
|
/** \internal
|
|
* ei_aligned_stack_alloc(SIZE) allocates an aligned buffer of SIZE bytes
|
|
* on the stack if SIZE is smaller than EIGEN_STACK_ALLOCATION_LIMIT.
|
|
* Otherwise the memory is allocated on the heap.
|
|
* Data allocated with ei_aligned_stack_alloc \b must be freed by calling ei_aligned_stack_free(PTR,SIZE).
|
|
* \code
|
|
* float * data = ei_aligned_stack_alloc(float,array.size());
|
|
* // ...
|
|
* ei_aligned_stack_free(data,float,array.size());
|
|
* \endcode
|
|
*/
|
|
#ifdef __linux__
|
|
#define ei_aligned_stack_alloc(SIZE) (SIZE<=EIGEN_STACK_ALLOCATION_LIMIT) \
|
|
? alloca(SIZE) \
|
|
: ei_aligned_malloc(SIZE)
|
|
#define ei_aligned_stack_free(PTR,SIZE) if(SIZE>EIGEN_STACK_ALLOCATION_LIMIT) ei_aligned_free(PTR)
|
|
#else
|
|
#define ei_aligned_stack_alloc(SIZE) ei_aligned_malloc(SIZE)
|
|
#define ei_aligned_stack_free(PTR,SIZE) ei_aligned_free(PTR)
|
|
#endif
|
|
|
|
#define ei_aligned_stack_new(TYPE,SIZE) ::new(ei_aligned_stack_alloc(sizeof(TYPE)*SIZE)) TYPE[SIZE]
|
|
#define ei_aligned_stack_delete(TYPE,PTR,SIZE) ei_delete_elements_of_array<TYPE>(PTR, SIZE); \
|
|
ei_aligned_stack_free(PTR,sizeof(TYPE)*SIZE)
|
|
|
|
/** Qt <= 4.4 has a bug where it calls new(ptr) T instead of ::new(ptr) T.
|
|
* This fails as we overload other operator new but not this one. What Qt really means is placement new.
|
|
* Since this is getting used only with fixed-size Eigen matrices where the ctor does nothing, it is OK to
|
|
* emulate placement new by just returning the ptr -- no need to call ctors. Good, because we don't know the
|
|
* class in this macro. So this can safely be used for QVector<Eigen::Vector4f> but definitely not for
|
|
* QVector<Eigen::VectorXf>.
|
|
*
|
|
* This macro will go away as soon as Qt >= 4.5 is prevalent -- most likely it should go away in Eigen 2.1.
|
|
*/
|
|
#ifdef EIGEN_WORK_AROUND_QT_BUG_CALLING_WRONG_OPERATOR_NEW_FIXED_IN_QT_4_5
|
|
#define EIGEN_WORKAROUND_FOR_QT_BUG_CALLING_WRONG_OPERATOR_NEW \
|
|
void *operator new(size_t, void *ptr) throw() { \
|
|
return ptr; \
|
|
} \
|
|
void *operator new[](size_t, void *ptr) throw() { \
|
|
return ptr; \
|
|
}
|
|
#else
|
|
#define EIGEN_WORKAROUND_FOR_QT_BUG_CALLING_WRONG_OPERATOR_NEW
|
|
#endif
|
|
|
|
/** \brief Overloads the operator new and delete of the class Type with operators that are aligned if NeedsToAlign is true
|
|
*
|
|
* When Eigen's explicit vectorization is enabled, Eigen assumes that some fixed sizes types are aligned
|
|
* on a 16 bytes boundary. Those include all Matrix types having a sizeof multiple of 16 bytes, e.g.:
|
|
* - Vector2d, Vector4f, Vector4i, Vector4d,
|
|
* - Matrix2d, Matrix4f, Matrix4i, Matrix4d,
|
|
* - etc.
|
|
* When an object is statically allocated, the compiler will automatically and always enforces 16 bytes
|
|
* alignment of the data when needed. However some troubles might appear when data are dynamically allocated.
|
|
* Let's pick an example:
|
|
* \code
|
|
* struct Foo {
|
|
* char dummy;
|
|
* Vector4f some_vector;
|
|
* };
|
|
* Foo obj1; // static allocation
|
|
* obj1.some_vector = Vector4f(..); // => OK
|
|
*
|
|
* Foo *pObj2 = new Foo; // dynamic allocation
|
|
* pObj2->some_vector = Vector4f(..); // => !! might segfault !!
|
|
* \endcode
|
|
* Here, the problem is that operator new is not aware of the compile time alignment requirement of the
|
|
* type Vector4f (and hence of the type Foo). Therefore "new Foo" does not necessarily returns a 16 bytes
|
|
* aligned pointer. The purpose of the class WithAlignedOperatorNew is exactly to overcome this issue by
|
|
* overloading the operator new to return aligned data when the vectorization is enabled.
|
|
* Here is a similar safe example:
|
|
* \code
|
|
* struct Foo {
|
|
* EIGEN_MAKE_ALIGNED_OPERATOR_NEW
|
|
* char dummy;
|
|
* Vector4f some_vector;
|
|
* };
|
|
* Foo *pObj2 = new Foo; // dynamic allocation
|
|
* pObj2->some_vector = Vector4f(..); // => SAFE !
|
|
* \endcode
|
|
*
|
|
* \sa class ei_new_allocator
|
|
*/
|
|
#define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign) \
|
|
void *operator new(size_t size) throw() { \
|
|
return Eigen::ei_conditional_aligned_malloc<NeedsToAlign>(size); \
|
|
} \
|
|
void *operator new[](size_t size) throw() { \
|
|
return Eigen::ei_conditional_aligned_malloc<NeedsToAlign>(size); \
|
|
} \
|
|
void operator delete(void * ptr) { Eigen::ei_aligned_free(ptr); } \
|
|
void operator delete[](void * ptr) { Eigen::ei_aligned_free(ptr); } \
|
|
EIGEN_WORKAROUND_FOR_QT_BUG_CALLING_WRONG_OPERATOR_NEW
|
|
|
|
#define EIGEN_MAKE_ALIGNED_OPERATOR_NEW EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(true)
|
|
#define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE(Scalar,Size) \
|
|
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(((Size)!=Eigen::Dynamic) && ((sizeof(Scalar)*(Size))%16==0))
|
|
|
|
/** Deprecated, use the EIGEN_MAKE_ALIGNED_OPERATOR_NEW macro instead in your own class */
|
|
struct WithAlignedOperatorNew
|
|
{
|
|
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
|
|
};
|
|
|
|
/** \class aligned_allocator
|
|
*
|
|
* \brief stl compatible allocator to use with with 16 byte aligned types
|
|
*
|
|
* Example:
|
|
* \code
|
|
* // Vector4f requires 16 bytes alignment:
|
|
* std::vector<Vector4f, aligned_allocator<Vector4f> > dataVec4;
|
|
* // Vector3f does not require 16 bytes alignment, no need to use Eigen's allocator:
|
|
* std::vector<Vector3f> dataVec3;
|
|
* \endcode
|
|
*
|
|
*/
|
|
template<class T>
|
|
class aligned_allocator
|
|
{
|
|
public:
|
|
typedef size_t size_type;
|
|
typedef ptrdiff_t difference_type;
|
|
typedef T* pointer;
|
|
typedef const T* const_pointer;
|
|
typedef T& reference;
|
|
typedef const T& const_reference;
|
|
typedef T value_type;
|
|
|
|
template<class U>
|
|
struct rebind
|
|
{
|
|
typedef aligned_allocator<U> other;
|
|
};
|
|
|
|
pointer address( reference value ) const
|
|
{
|
|
return &value;
|
|
}
|
|
|
|
const_pointer address( const_reference value ) const
|
|
{
|
|
return &value;
|
|
}
|
|
|
|
aligned_allocator() throw()
|
|
{
|
|
}
|
|
|
|
aligned_allocator( const aligned_allocator& ) throw()
|
|
{
|
|
}
|
|
|
|
template<class U>
|
|
aligned_allocator( const aligned_allocator<U>& ) throw()
|
|
{
|
|
}
|
|
|
|
~aligned_allocator() throw()
|
|
{
|
|
}
|
|
|
|
size_type max_size() const throw()
|
|
{
|
|
return std::numeric_limits<size_type>::max();
|
|
}
|
|
|
|
pointer allocate( size_type num, const_pointer* hint = 0 )
|
|
{
|
|
static_cast<void>( hint ); // suppress unused variable warning
|
|
return static_cast<pointer>( ei_aligned_malloc( num * sizeof(T) ) );
|
|
}
|
|
|
|
void construct( pointer p, const T& value )
|
|
{
|
|
::new( p ) T( value );
|
|
}
|
|
|
|
void destroy( pointer p )
|
|
{
|
|
p->~T();
|
|
}
|
|
|
|
void deallocate( pointer p, size_type /*num*/ )
|
|
{
|
|
ei_aligned_free( p );
|
|
}
|
|
};
|
|
|
|
/** \class ei_new_allocator
|
|
*
|
|
* \brief stl compatible allocator to use with with fixed-size vector and matrix types
|
|
*
|
|
* STL allocator simply wrapping operators new[] and delete[]. Unlike GCC's default new_allocator,
|
|
* ei_new_allocator call operator new on the type \a T and not the general new operator ignoring
|
|
* overloaded version of operator new.
|
|
*
|
|
* Example:
|
|
* \code
|
|
* // Vector4f requires 16 bytes alignment:
|
|
* std::vector<Vector4f,ei_new_allocator<Vector4f> > dataVec4;
|
|
* // Vector3f does not require 16 bytes alignment, no need to use Eigen's allocator:
|
|
* std::vector<Vector3f> dataVec3;
|
|
*
|
|
* struct Foo : WithAlignedOperatorNew {
|
|
* char dummy;
|
|
* Vector4f some_vector;
|
|
* };
|
|
* std::vector<Foo,ei_new_allocator<Foo> > dataFoo;
|
|
* \endcode
|
|
*
|
|
* \sa class WithAlignedOperatorNew
|
|
*/
|
|
template<typename T> class ei_new_allocator
|
|
{
|
|
public:
|
|
typedef T value_type;
|
|
typedef T* pointer;
|
|
typedef const T* const_pointer;
|
|
typedef T& reference;
|
|
typedef const T& const_reference;
|
|
|
|
template<typename OtherType>
|
|
struct rebind
|
|
{ typedef ei_new_allocator<OtherType> other; };
|
|
|
|
T* address(T& ref) const { return &ref; }
|
|
const T* address(const T& ref) const { return &ref; }
|
|
T* allocate(size_t size, const void* = 0) { return new T[size]; }
|
|
void deallocate(T* ptr, size_t) { delete[] ptr; }
|
|
size_t max_size() const { return size_t(-1) / sizeof(T); }
|
|
// FIXME I'm note sure about this construction...
|
|
void construct(T* ptr, const T& refObj) { ::new(ptr) T(refObj); }
|
|
void destroy(T* ptr) { ptr->~T(); }
|
|
};
|
|
|
|
#endif // EIGEN_MEMORY_H
|