eigen/Eigen/src/Core/Matrix.h
Gael Guennebaud f52d119b9c Solve a big issue with data alignment and dynamic allocation:
* add a WithAlignedOperatorNew class with overloaded operator new
* make Matrix (and Quaternion, Transform, Hyperplane, etc.) use it
  if needed such that "*(new Vector4) = xpr" does not failed anymore.
* Please: make sure your classes having fixed size Eigen's vector
  or matrice attributes inherit WithAlignedOperatorNew
* add a ei_new_allocator STL memory allocator to use with STL containers.
  This allocator really calls operator new on your types (unlike GCC's
  new_allocator). Example:
  std::vector<Vector4f> data(10);
  will segfault if the vectorization is enabled, instead use:
  std::vector<Vector4f,ei_new_allocator<Vector4f> > data(10);
NOTE: you only have to worry if you deal with fixed-size matrix types
with "sizeof(matrix_type)%16==0"...
2008-09-03 00:32:56 +00:00

440 lines
17 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2006-2008 Benoit Jacob <jacob@math.jussieu.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_MATRIX_H
#define EIGEN_MATRIX_H
/** \class Matrix
*
* \brief The matrix class, also used for vectors and row-vectors
*
* \param _Scalar the scalar type, i.e. the type of the coefficients
* \param _Rows the number of rows at compile-time. Use the special value \a Dynamic to
* specify that the number of rows is dynamic, i.e. is not fixed at compile-time.
* \param _Cols the number of columns at compile-time. Use the special value \a Dynamic to
* specify that the number of columns is dynamic, i.e. is not fixed at compile-time.
* \param _StorageOrder can be either RowMajor or ColMajor. The default is ColMajor.
* \param _MaxRows the maximum number of rows at compile-time. By default this is equal to \a _Rows.
* The most common exception is when you don't know the exact number of rows, but know that
* it is smaller than some given value. Then you can set \a _MaxRows to that value, and set
* _Rows to \a Dynamic.
* \param _MaxCols the maximum number of cols at compile-time. By default this is equal to \a _Cols.
* The most common exception is when you don't know the exact number of cols, but know that
* it is smaller than some given value. Then you can set \a _MaxCols to that value, and set
* _Cols to \a Dynamic.
*
* This single class template covers all kinds of matrix and vectors that Eigen can handle.
* All matrix and vector types are just typedefs to specializations of this class template.
*
* These typedefs are as follows:
* \li \c %Matrix\#\#Size\#\#Type for square matrices
* \li \c Vector\#\#Size\#\#Type for vectors (matrices with one column)
* \li \c RowVector\#\#Size\#\#Type for row-vectors (matrices with one row)
*
* where \c Size can be
* \li \c 2 for fixed size 2
* \li \c 3 for fixed size 3
* \li \c 4 for fixed size 4
* \li \c X for dynamic size
*
* and \c Type can be
* \li \c i for type \c int
* \li \c f for type \c float
* \li \c d for type \c double
* \li \c cf for type \c std::complex<float>
* \li \c cd for type \c std::complex<double>
*
* Examples:
* \li \c Matrix2d is a typedef for \c Matrix<double,2,2>
* \li \c VectorXf is a typedef for \c Matrix<float,Dynamic,1>
* \li \c RowVector3i is a typedef for \c Matrix<int,1,3>
*
* See \ref matrixtypedefs for an explicit list of all matrix typedefs.
*
* Of course these typedefs do not exhaust all the possibilities offered by the Matrix class
* template, they only address some of the most common cases. For instance, if you want a
* fixed-size matrix with 3 rows and 5 columns, there is no typedef for that, so you should use
* \c Matrix<double,3,5>.
*
* Note that most of the API is in the base class MatrixBase.
*/
template<typename _Scalar, int _Rows, int _Cols, int _StorageOrder, int _MaxRows, int _MaxCols>
struct ei_traits<Matrix<_Scalar, _Rows, _Cols, _StorageOrder, _MaxRows, _MaxCols> >
{
typedef _Scalar Scalar;
enum {
RowsAtCompileTime = _Rows,
ColsAtCompileTime = _Cols,
MaxRowsAtCompileTime = _MaxRows,
MaxColsAtCompileTime = _MaxCols,
Flags = ei_compute_matrix_flags<_Scalar, _Rows, _Cols, _StorageOrder, _MaxRows, _MaxCols>::ret,
CoeffReadCost = NumTraits<Scalar>::ReadCost,
SupportedAccessPatterns = RandomAccessPattern
};
};
template<typename _Scalar, int _Rows, int _Cols, int _StorageOrder, int _MaxRows, int _MaxCols>
class Matrix
: public MatrixBase<Matrix<_Scalar, _Rows, _Cols, _StorageOrder, _MaxRows, _MaxCols> >
#ifdef EIGEN_VECTORIZE
, public ei_with_aligned_operator_new<_Scalar,ei_size_at_compile_time<_Rows,_Cols>::ret>
#endif
{
public:
EIGEN_GENERIC_PUBLIC_INTERFACE(Matrix)
friend class Eigen::Map<Matrix, Unaligned>;
friend class Eigen::Map<Matrix, Aligned>;
protected:
ei_matrix_storage<Scalar, MaxSizeAtCompileTime, RowsAtCompileTime, ColsAtCompileTime> m_storage;
public:
inline int rows() const { return m_storage.rows(); }
inline int cols() const { return m_storage.cols(); }
inline int stride(void) const
{
if(Flags & RowMajorBit)
return m_storage.cols();
else
return m_storage.rows();
}
inline const Scalar& coeff(int row, int col) const
{
if(Flags & RowMajorBit)
return m_storage.data()[col + row * m_storage.cols()];
else // column-major
return m_storage.data()[row + col * m_storage.rows()];
}
inline const Scalar& coeff(int index) const
{
return m_storage.data()[index];
}
inline Scalar& coeffRef(int row, int col)
{
if(Flags & RowMajorBit)
return m_storage.data()[col + row * m_storage.cols()];
else // column-major
return m_storage.data()[row + col * m_storage.rows()];
}
inline Scalar& coeffRef(int index)
{
return m_storage.data()[index];
}
template<int LoadMode>
inline PacketScalar packet(int row, int col) const
{
return ei_ploadt<Scalar, LoadMode>
(m_storage.data() + (Flags & RowMajorBit
? col + row * m_storage.cols()
: row + col * m_storage.rows()));
}
template<int LoadMode>
inline PacketScalar packet(int index) const
{
return ei_ploadt<Scalar, LoadMode>(m_storage.data() + index);
}
template<int StoreMode>
inline void writePacket(int row, int col, const PacketScalar& x)
{
ei_pstoret<Scalar, PacketScalar, StoreMode>
(m_storage.data() + (Flags & RowMajorBit
? col + row * m_storage.cols()
: row + col * m_storage.rows()), x);
}
template<int StoreMode>
inline void writePacket(int index, const PacketScalar& x)
{
ei_pstoret<Scalar, PacketScalar, StoreMode>(m_storage.data() + index, x);
}
/** \returns a const pointer to the data array of this matrix */
inline const Scalar *data() const
{ return m_storage.data(); }
/** \returns a pointer to the data array of this matrix */
inline Scalar *data()
{ return m_storage.data(); }
inline void resize(int rows, int cols)
{
ei_assert(rows > 0
&& (MaxRowsAtCompileTime == Dynamic || MaxRowsAtCompileTime >= rows)
&& (RowsAtCompileTime == Dynamic || RowsAtCompileTime == rows)
&& cols > 0
&& (MaxColsAtCompileTime == Dynamic || MaxColsAtCompileTime >= cols)
&& (ColsAtCompileTime == Dynamic || ColsAtCompileTime == cols));
m_storage.resize(rows * cols, rows, cols);
}
inline void resize(int size)
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Matrix)
if(RowsAtCompileTime == 1)
m_storage.resize(size, 1, size);
else
m_storage.resize(size, size, 1);
}
/** Copies the value of the expression \a other into *this.
*
* *this is resized (if possible) to match the dimensions of \a other.
*
* As a special exception, copying a row-vector into a vector (and conversely)
* is allowed. The resizing, if any, is then done in the appropriate way so that
* row-vectors remain row-vectors and vectors remain vectors.
*/
template<typename OtherDerived>
inline Matrix& operator=(const MatrixBase<OtherDerived>& other)
{
if(RowsAtCompileTime == 1)
{
ei_assert(other.isVector());
resize(1, other.size());
}
else if(ColsAtCompileTime == 1)
{
ei_assert(other.isVector());
resize(other.size(), 1);
}
else resize(other.rows(), other.cols());
return Base::operator=(other.derived());
}
/** This is a special case of the templated operator=. Its purpose is to
* prevent a default operator= from hiding the templated operator=.
*/
inline Matrix& operator=(const Matrix& other)
{
return operator=<Matrix>(other);
}
EIGEN_INHERIT_ASSIGNMENT_OPERATOR(Matrix, +=)
EIGEN_INHERIT_ASSIGNMENT_OPERATOR(Matrix, -=)
EIGEN_INHERIT_SCALAR_ASSIGNMENT_OPERATOR(Matrix, *=)
EIGEN_INHERIT_SCALAR_ASSIGNMENT_OPERATOR(Matrix, /=)
/** Default constructor.
*
* For fixed-size matrices, does nothing.
*
* For dynamic-size matrices, initializes with initial size 1x1, which is inefficient, hence
* when performance matters one should avoid using this constructor on dynamic-size matrices.
*/
inline explicit Matrix() : m_storage(1, 1, 1)
{
ei_assert(RowsAtCompileTime > 0 && ColsAtCompileTime > 0);
}
/** Constructs a vector or row-vector with given dimension. \only_for_vectors
*
* Note that this is only useful for dynamic-size vectors. For fixed-size vectors,
* it is redundant to pass the dimension here, so it makes more sense to use the default
* constructor Matrix() instead.
*/
inline explicit Matrix(int dim)
: m_storage(dim, RowsAtCompileTime == 1 ? 1 : dim, ColsAtCompileTime == 1 ? 1 : dim)
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Matrix)
ei_assert(dim > 0);
ei_assert(SizeAtCompileTime == Dynamic || SizeAtCompileTime == dim);
}
/** This constructor has two very different behaviors, depending on the type of *this.
*
* \li When Matrix is a fixed-size vector type of size 2, this constructor constructs
* an initialized vector. The parameters \a x, \a y are copied into the first and second
* coords of the vector respectively.
* \li Otherwise, this constructor constructs an uninitialized matrix with \a x rows and
* \a y columns. This is useful for dynamic-size matrices. For fixed-size matrices,
* it is redundant to pass these parameters, so one should use the default constructor
* Matrix() instead.
*/
inline Matrix(int x, int y) : m_storage(x*y, x, y)
{
if((RowsAtCompileTime == 1 && ColsAtCompileTime == 2)
|| (RowsAtCompileTime == 2 && ColsAtCompileTime == 1))
{
m_storage.data()[0] = Scalar(x);
m_storage.data()[1] = Scalar(y);
}
else
{
ei_assert(x > 0 && (RowsAtCompileTime == Dynamic || RowsAtCompileTime == x)
&& y > 0 && (ColsAtCompileTime == Dynamic || ColsAtCompileTime == y));
}
}
/** constructs an initialized 2D vector with given coefficients */
inline Matrix(const float& x, const float& y)
{
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Matrix, 2);
m_storage.data()[0] = x;
m_storage.data()[1] = y;
}
/** constructs an initialized 2D vector with given coefficients */
inline Matrix(const double& x, const double& y)
{
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Matrix, 2);
m_storage.data()[0] = x;
m_storage.data()[1] = y;
}
/** constructs an initialized 3D vector with given coefficients */
inline Matrix(const Scalar& x, const Scalar& y, const Scalar& z)
{
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Matrix, 3);
m_storage.data()[0] = x;
m_storage.data()[1] = y;
m_storage.data()[2] = z;
}
/** constructs an initialized 4D vector with given coefficients */
inline Matrix(const Scalar& x, const Scalar& y, const Scalar& z, const Scalar& w)
{
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Matrix, 4);
m_storage.data()[0] = x;
m_storage.data()[1] = y;
m_storage.data()[2] = z;
m_storage.data()[3] = w;
}
explicit Matrix(const Scalar *data);
/** Constructor copying the value of the expression \a other */
template<typename OtherDerived>
inline Matrix(const MatrixBase<OtherDerived>& other)
: m_storage(other.rows() * other.cols(), other.rows(), other.cols())
{
ei_assign_selector<Matrix,OtherDerived,false>::run(*this, other.derived());
//Base::operator=(other.derived());
}
/** Copy constructor */
inline Matrix(const Matrix& other)
: Base(), m_storage(other.rows() * other.cols(), other.rows(), other.cols())
{
Base::lazyAssign(other);
}
/** Destructor */
inline ~Matrix() {}
/** Override MatrixBase::eval() since matrices don't need to be evaluated, it is enough to just read them.
* This prevents a useless copy when doing e.g. "m1 = m2.eval()"
*/
const Matrix& eval() const
{
return *this;
}
/** Override MatrixBase::swap() since for dynamic-sized matrices of same type it is enough to swap the
* data pointers.
*/
void swap(Matrix& other)
{
if (Base::SizeAtCompileTime==Dynamic)
m_storage.swap(other.m_storage);
else
this->Base::swap(other);
}
/////////// Geometry module ///////////
template<typename OtherDerived>
explicit Matrix(const RotationBase<OtherDerived,ColsAtCompileTime>& r);
template<typename OtherDerived>
Matrix& operator=(const RotationBase<OtherDerived,ColsAtCompileTime>& r);
};
/** \defgroup matrixtypedefs Global matrix typedefs
*
* \ingroup Core_Module
*
* Eigen defines several typedef shortcuts for most common matrix and vector types.
*
* The general patterns are the following:
*
* \c MatrixSizeType where \c Size can be \c 2,\c 3,\c 4 for fixed size square matrices or \c X for dynamic size,
* and where \c Type can be \c i for integer, \c f for float, \c d for double, \c cf for complex float, \c cd
* for complex double.
*
* For example, \c Matrix3d is a fixed-size 3x3 matrix type of doubles, and \c MatrixXf is a dynamic-size matrix of floats.
*
* There are also \c VectorSizeType and \c RowVectorSizeType which are self-explanatory. For example, \c Vector4cf is
* a fixed-size vector of 4 complex floats.
*
* \sa class Matrix
*/
#define EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, Size, SizeSuffix) \
/** \ingroup matrixtypedefs */ \
typedef Matrix<Type, Size, Size> Matrix##SizeSuffix##TypeSuffix; \
/** \ingroup matrixtypedefs */ \
typedef Matrix<Type, Size, 1> Vector##SizeSuffix##TypeSuffix; \
/** \ingroup matrixtypedefs */ \
typedef Matrix<Type, 1, Size> RowVector##SizeSuffix##TypeSuffix;
#define EIGEN_MAKE_TYPEDEFS_ALL_SIZES(Type, TypeSuffix) \
EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 2, 2) \
EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 3, 3) \
EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 4, 4) \
EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, Dynamic, X)
EIGEN_MAKE_TYPEDEFS_ALL_SIZES(int, i)
EIGEN_MAKE_TYPEDEFS_ALL_SIZES(float, f)
EIGEN_MAKE_TYPEDEFS_ALL_SIZES(double, d)
EIGEN_MAKE_TYPEDEFS_ALL_SIZES(std::complex<float>, cf)
EIGEN_MAKE_TYPEDEFS_ALL_SIZES(std::complex<double>, cd)
#undef EIGEN_MAKE_TYPEDEFS_ALL_SIZES
#undef EIGEN_MAKE_TYPEDEFS
#undef EIGEN_MAKE_TYPEDEFS_LARGE
#define EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, SizeSuffix) \
using Eigen::Matrix##SizeSuffix##TypeSuffix; \
using Eigen::Vector##SizeSuffix##TypeSuffix; \
using Eigen::RowVector##SizeSuffix##TypeSuffix;
#define EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(TypeSuffix) \
EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, 2) \
EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, 3) \
EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, 4) \
EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, X) \
#define EIGEN_USING_MATRIX_TYPEDEFS \
EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(i) \
EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(f) \
EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(d) \
EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(cf) \
EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(cd)
#endif // EIGEN_MATRIX_H