eigen/Eigen/src/Geometry/Quaternion.h
Gael Guennebaud f52d119b9c Solve a big issue with data alignment and dynamic allocation:
* add a WithAlignedOperatorNew class with overloaded operator new
* make Matrix (and Quaternion, Transform, Hyperplane, etc.) use it
  if needed such that "*(new Vector4) = xpr" does not failed anymore.
* Please: make sure your classes having fixed size Eigen's vector
  or matrice attributes inherit WithAlignedOperatorNew
* add a ei_new_allocator STL memory allocator to use with STL containers.
  This allocator really calls operator new on your types (unlike GCC's
  new_allocator). Example:
  std::vector<Vector4f> data(10);
  will segfault if the vectorization is enabled, instead use:
  std::vector<Vector4f,ei_new_allocator<Vector4f> > data(10);
NOTE: you only have to worry if you deal with fixed-size matrix types
with "sizeof(matrix_type)%16==0"...
2008-09-03 00:32:56 +00:00

440 lines
15 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_QUATERNION_H
#define EIGEN_QUATERNION_H
template<typename Other,
int OtherRows=Other::RowsAtCompileTime,
int OtherCols=Other::ColsAtCompileTime>
struct ei_quaternion_assign_impl;
/** \geometry_module \ingroup GeometryModule
*
* \class Quaternion
*
* \brief The quaternion class used to represent 3D orientations and rotations
*
* \param _Scalar the scalar type, i.e., the type of the coefficients
*
* This class represents a quaternion \f$ w+xi+yj+zk \f$ that is a convenient representation of
* orientations and rotations of objects in three dimensions. Compared to other representations
* like Euler angles or 3x3 matrices, quatertions offer the following advantages:
* \li \b compact storage (4 scalars)
* \li \b efficient to compose (28 flops),
* \li \b stable spherical interpolation
*
* The following two typedefs are provided for convenience:
* \li \c Quaternionf for \c float
* \li \c Quaterniond for \c double
*
* \sa class AngleAxis, class Transform
*/
template<typename _Scalar> struct ei_traits<Quaternion<_Scalar> >
{
typedef _Scalar Scalar;
};
template<typename _Scalar>
class Quaternion : public RotationBase<Quaternion<_Scalar>,3>
#ifdef EIGEN_VECTORIZE
, public ei_with_aligned_operator_new<_Scalar,4>
#endif
{
typedef RotationBase<Quaternion<_Scalar>,3> Base;
typedef Matrix<_Scalar, 4, 1> Coefficients;
Coefficients m_coeffs;
public:
using Base::operator*;
/** the scalar type of the coefficients */
typedef _Scalar Scalar;
/** the type of a 3D vector */
typedef Matrix<Scalar,3,1> Vector3;
/** the equivalent rotation matrix type */
typedef Matrix<Scalar,3,3> Matrix3;
/** the equivalent angle-axis type */
typedef AngleAxis<Scalar> AngleAxisType;
/** \returns the \c x coefficient */
inline Scalar x() const { return m_coeffs.coeff(0); }
/** \returns the \c y coefficient */
inline Scalar y() const { return m_coeffs.coeff(1); }
/** \returns the \c z coefficient */
inline Scalar z() const { return m_coeffs.coeff(2); }
/** \returns the \c w coefficient */
inline Scalar w() const { return m_coeffs.coeff(3); }
/** \returns a reference to the \c x coefficient */
inline Scalar& x() { return m_coeffs.coeffRef(0); }
/** \returns a reference to the \c y coefficient */
inline Scalar& y() { return m_coeffs.coeffRef(1); }
/** \returns a reference to the \c z coefficient */
inline Scalar& z() { return m_coeffs.coeffRef(2); }
/** \returns a reference to the \c w coefficient */
inline Scalar& w() { return m_coeffs.coeffRef(3); }
/** \returns a read-only vector expression of the imaginary part (x,y,z) */
inline const Block<Coefficients,3,1> vec() const { return m_coeffs.template start<3>(); }
/** \returns a vector expression of the imaginary part (x,y,z) */
inline Block<Coefficients,3,1> vec() { return m_coeffs.template start<3>(); }
/** \returns a read-only vector expression of the coefficients (x,y,z,w) */
inline const Coefficients& coeffs() const { return m_coeffs; }
/** \returns a vector expression of the coefficients (x,y,z,w) */
inline Coefficients& coeffs() { return m_coeffs; }
/** Default constructor and initializing an identity quaternion. */
inline Quaternion()
{ m_coeffs << 0, 0, 0, 1; }
/** Constructs and initializes the quaternion \f$ w+xi+yj+zk \f$ from
* its four coefficients \a w, \a x, \a y and \a z.
*
* \warning Note the order of the arguments: the real \a w coefficient first,
* while internally the coefficients are stored in the following order:
* [\c x, \c y, \c z, \c w]
*/
inline Quaternion(Scalar w, Scalar x, Scalar y, Scalar z)
{ m_coeffs << x, y, z, w; }
/** Copy constructor */
inline Quaternion(const Quaternion& other) { m_coeffs = other.m_coeffs; }
/** Constructs and initializes a quaternion from the angle-axis \a aa */
explicit inline Quaternion(const AngleAxisType& aa) { *this = aa; }
/** Constructs and initializes a quaternion from either:
* - a rotation matrix expression,
* - a 4D vector expression representing quaternion coefficients.
* \sa operator=(MatrixBase<Derived>)
*/
template<typename Derived>
explicit inline Quaternion(const MatrixBase<Derived>& other) { *this = other; }
Quaternion& operator=(const Quaternion& other);
Quaternion& operator=(const AngleAxisType& aa);
template<typename Derived>
Quaternion& operator=(const MatrixBase<Derived>& m);
/** \returns a quaternion representing an identity rotation
* \sa MatrixBase::Identity()
*/
inline static Quaternion Identity() { return Quaternion(1, 0, 0, 0); }
/** \sa Quaternion::Identity(), MatrixBase::setIdentity()
*/
inline Quaternion& setIdentity() { m_coeffs << 1, 0, 0, 0; return *this; }
/** \returns the squared norm of the quaternion's coefficients
* \sa Quaternion::norm(), MatrixBase::norm2()
*/
inline Scalar norm2() const { return m_coeffs.norm2(); }
/** \returns the norm of the quaternion's coefficients
* \sa Quaternion::norm2(), MatrixBase::norm()
*/
inline Scalar norm() const { return m_coeffs.norm(); }
Matrix3 toRotationMatrix(void) const;
template<typename Derived1, typename Derived2>
Quaternion& setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b);
inline Quaternion operator* (const Quaternion& q) const;
inline Quaternion& operator*= (const Quaternion& q);
Quaternion inverse(void) const;
Quaternion conjugate(void) const;
Quaternion slerp(Scalar t, const Quaternion& other) const;
template<typename Derived>
Vector3 operator* (const MatrixBase<Derived>& vec) const;
};
/** \ingroup GeometryModule
* single precision quaternion type */
typedef Quaternion<float> Quaternionf;
/** \ingroup GeometryModule
* double precision quaternion type */
typedef Quaternion<double> Quaterniond;
/** \returns the concatenation of two rotations as a quaternion-quaternion product */
template <typename Scalar>
inline Quaternion<Scalar> Quaternion<Scalar>::operator* (const Quaternion& other) const
{
return Quaternion
(
this->w() * other.w() - this->x() * other.x() - this->y() * other.y() - this->z() * other.z(),
this->w() * other.x() + this->x() * other.w() + this->y() * other.z() - this->z() * other.y(),
this->w() * other.y() + this->y() * other.w() + this->z() * other.x() - this->x() * other.z(),
this->w() * other.z() + this->z() * other.w() + this->x() * other.y() - this->y() * other.x()
);
}
/** \sa operator*(Quaternion) */
template <typename Scalar>
inline Quaternion<Scalar>& Quaternion<Scalar>::operator*= (const Quaternion& other)
{
return (*this = *this * other);
}
/** Rotation of a vector by a quaternion.
* \remarks If the quaternion is used to rotate several points (>1)
* then it is much more efficient to first convert it to a 3x3 Matrix.
* Comparison of the operation cost for n transformations:
* - Quaternion: 30n
* - Via a Matrix3: 24 + 15n
*/
template <typename Scalar>
template<typename Derived>
inline typename Quaternion<Scalar>::Vector3
Quaternion<Scalar>::operator* (const MatrixBase<Derived>& v) const
{
// Note that this algorithm comes from the optimization by hand
// of the conversion to a Matrix followed by a Matrix/Vector product.
// It appears to be much faster than the common algorithm found
// in the litterature (30 versus 39 flops). It also requires two
// Vector3 as temporaries.
Vector3 uv;
uv = 2 * this->vec().cross(v);
return v + this->w() * uv + this->vec().cross(uv);
}
template<typename Scalar>
inline Quaternion<Scalar>& Quaternion<Scalar>::operator=(const Quaternion& other)
{
m_coeffs = other.m_coeffs;
return *this;
}
/** Set \c *this from an angle-axis \a aa and returns a reference to \c *this
*/
template<typename Scalar>
inline Quaternion<Scalar>& Quaternion<Scalar>::operator=(const AngleAxisType& aa)
{
Scalar ha = 0.5*aa.angle();
this->w() = ei_cos(ha);
this->vec() = ei_sin(ha) * aa.axis();
return *this;
}
/** Set \c *this from the expression \a xpr:
* - if \a xpr is a 4x1 vector, then \a xpr is assumed to be a quaternion
* - if \a xpr is a 3x3 matrix, then \a xpr is assumed to be rotation matrix
* and \a xpr is converted to a quaternion
*/
template<typename Scalar>
template<typename Derived>
inline Quaternion<Scalar>& Quaternion<Scalar>::operator=(const MatrixBase<Derived>& xpr)
{
ei_quaternion_assign_impl<Derived>::run(*this, xpr.derived());
return *this;
}
/** Convert the quaternion to a 3x3 rotation matrix */
template<typename Scalar>
inline typename Quaternion<Scalar>::Matrix3
Quaternion<Scalar>::toRotationMatrix(void) const
{
// NOTE if inlined, then gcc 4.2 and 4.4 get rid of the temporary (not gcc 4.3 !!)
// if not inlined then the cost of the return by value is huge ~ +35%,
// however, not inlining this function is an order of magnitude slower, so
// it has to be inlined, and so the return by value is not an issue
Matrix3 res;
Scalar tx = 2*this->x();
Scalar ty = 2*this->y();
Scalar tz = 2*this->z();
Scalar twx = tx*this->w();
Scalar twy = ty*this->w();
Scalar twz = tz*this->w();
Scalar txx = tx*this->x();
Scalar txy = ty*this->x();
Scalar txz = tz*this->x();
Scalar tyy = ty*this->y();
Scalar tyz = tz*this->y();
Scalar tzz = tz*this->z();
res.coeffRef(0,0) = 1-(tyy+tzz);
res.coeffRef(0,1) = txy-twz;
res.coeffRef(0,2) = txz+twy;
res.coeffRef(1,0) = txy+twz;
res.coeffRef(1,1) = 1-(txx+tzz);
res.coeffRef(1,2) = tyz-twx;
res.coeffRef(2,0) = txz-twy;
res.coeffRef(2,1) = tyz+twx;
res.coeffRef(2,2) = 1-(txx+tyy);
return res;
}
/** Makes a quaternion representing the rotation between two vectors \a a and \a b.
* \returns a reference to the actual quaternion
* Note that the two input vectors have \b not to be normalized.
*/
template<typename Scalar>
template<typename Derived1, typename Derived2>
inline Quaternion<Scalar>& Quaternion<Scalar>::setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b)
{
Vector3 v0 = a.normalized();
Vector3 v1 = b.normalized();
Vector3 axis = v0.cross(v1);
Scalar c = v0.dot(v1);
// if dot == 1, vectors are the same
if (ei_isApprox(c,Scalar(1)))
{
// set to identity
this->w() = 1; this->vec().setZero();
}
Scalar s = ei_sqrt((1+c)*2);
Scalar invs = 1./s;
this->vec() = axis * invs;
this->w() = s * 0.5;
return *this;
}
/** \returns the multiplicative inverse of \c *this
* Note that in most cases, i.e., if you simply want the opposite rotation,
* and/or the quaternion is normalized, then it is enough to use the conjugate.
*
* \sa Quaternion::conjugate()
*/
template <typename Scalar>
inline Quaternion<Scalar> Quaternion<Scalar>::inverse() const
{
// FIXME should this function be called multiplicativeInverse and conjugate() be called inverse() or opposite() ??
Scalar n2 = this->norm2();
if (n2 > 0)
return Quaternion(conjugate().coeffs() / n2);
else
{
// return an invalid result to flag the error
return Quaternion(Coefficients::Zero());
}
}
/** \returns the conjugate of the \c *this which is equal to the multiplicative inverse
* if the quaternion is normalized.
* The conjugate of a quaternion represents the opposite rotation.
*
* \sa Quaternion::inverse()
*/
template <typename Scalar>
inline Quaternion<Scalar> Quaternion<Scalar>::conjugate() const
{
return Quaternion(this->w(),-this->x(),-this->y(),-this->z());
}
/** \returns the spherical linear interpolation between the two quaternions
* \c *this and \a other at the parameter \a t
*/
template <typename Scalar>
Quaternion<Scalar> Quaternion<Scalar>::slerp(Scalar t, const Quaternion& other) const
{
// FIXME options for this function would be:
// 1 - Quaternion& fromSlerp(Scalar t, const Quaternion& q0, const Quaternion& q1);
// which set *this from the s-lerp and returns *this
// 2 - Quaternion slerp(Scalar t, const Quaternion& other) const
// which returns the s-lerp between this and other
// ??
if (m_coeffs == other.m_coeffs)
return *this;
Scalar d = m_coeffs.dot(other.m_coeffs);
// theta is the angle between the 2 quaternions
Scalar theta = std::acos(ei_abs(d));
Scalar sinTheta = ei_sin(theta);
Scalar scale0 = ei_sin( ( Scalar(1) - t ) * theta) / sinTheta;
Scalar scale1 = ei_sin( ( t * theta) ) / sinTheta;
if (d<0)
scale1 = -scale1;
return Quaternion(scale0 * m_coeffs + scale1 * other.m_coeffs);
}
// set from a rotation matrix
template<typename Other>
struct ei_quaternion_assign_impl<Other,3,3>
{
typedef typename Other::Scalar Scalar;
inline static void run(Quaternion<Scalar>& q, const Other& mat)
{
// This algorithm comes from "Quaternion Calculus and Fast Animation",
// Ken Shoemake, 1987 SIGGRAPH course notes
Scalar t = mat.trace();
if (t > 0)
{
t = ei_sqrt(t + 1.0);
q.w() = 0.5*t;
t = 0.5/t;
q.x() = (mat.coeff(2,1) - mat.coeff(1,2)) * t;
q.y() = (mat.coeff(0,2) - mat.coeff(2,0)) * t;
q.z() = (mat.coeff(1,0) - mat.coeff(0,1)) * t;
}
else
{
int i = 0;
if (mat.coeff(1,1) > mat.coeff(0,0))
i = 1;
if (mat.coeff(2,2) > mat.coeff(i,i))
i = 2;
int j = (i+1)%3;
int k = (j+1)%3;
t = ei_sqrt(mat.coeff(i,i)-mat.coeff(j,j)-mat.coeff(k,k) + 1.0);
q.coeffs().coeffRef(i) = 0.5 * t;
t = 0.5/t;
q.w() = (mat.coeff(k,j)-mat.coeff(j,k))*t;
q.coeffs().coeffRef(j) = (mat.coeff(j,i)+mat.coeff(i,j))*t;
q.coeffs().coeffRef(k) = (mat.coeff(k,i)+mat.coeff(i,k))*t;
}
}
};
// set from a vector of coefficients assumed to be a quaternion
template<typename Other>
struct ei_quaternion_assign_impl<Other,4,1>
{
typedef typename Other::Scalar Scalar;
inline static void run(Quaternion<Scalar>& q, const Other& vec)
{
q.coeffs() = vec;
}
};
#endif // EIGEN_QUATERNION_H