mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-06-04 18:54:00 +08:00
180 lines
6.3 KiB
C++
180 lines
6.3 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#ifndef EIGEN_CXX11_TENSOR_TENSOR_EVAL_TO_H
|
|
#define EIGEN_CXX11_TENSOR_TENSOR_EVAL_TO_H
|
|
|
|
namespace Eigen {
|
|
|
|
/** \class TensorForcedEval
|
|
* \ingroup CXX11_Tensor_Module
|
|
*
|
|
* \brief Tensor reshaping class.
|
|
*
|
|
*
|
|
*/
|
|
namespace internal {
|
|
template<typename XprType, template <class> class MakePointer_>
|
|
struct traits<TensorEvalToOp<XprType, MakePointer_> >
|
|
{
|
|
// Type promotion to handle the case where the types of the lhs and the rhs are different.
|
|
typedef typename XprType::Scalar Scalar;
|
|
typedef traits<XprType> XprTraits;
|
|
typedef typename XprTraits::StorageKind StorageKind;
|
|
typedef typename XprTraits::Index Index;
|
|
typedef typename XprType::Nested Nested;
|
|
typedef typename remove_reference<Nested>::type _Nested;
|
|
static const int NumDimensions = XprTraits::NumDimensions;
|
|
static const int Layout = XprTraits::Layout;
|
|
|
|
enum {
|
|
Flags = 0
|
|
};
|
|
template <class T>
|
|
struct MakePointer {
|
|
typedef typename MakePointer_<T>::Type Type;
|
|
};
|
|
};
|
|
|
|
template<typename XprType, template <class> class MakePointer_>
|
|
struct eval<TensorEvalToOp<XprType, MakePointer_>, Eigen::Dense>
|
|
{
|
|
typedef const TensorEvalToOp<XprType>& type;
|
|
};
|
|
|
|
template<typename XprType, template <class> class MakePointer_>
|
|
struct nested<TensorEvalToOp<XprType, MakePointer_>, 1, typename eval<TensorEvalToOp<XprType, MakePointer_> >::type>
|
|
{
|
|
typedef TensorEvalToOp<XprType> type;
|
|
};
|
|
|
|
} // end namespace internal
|
|
|
|
|
|
|
|
|
|
template<typename XprType, template <class> class MakePointer_>
|
|
class TensorEvalToOp : public TensorBase<TensorEvalToOp<XprType, MakePointer_>, ReadOnlyAccessors>
|
|
{
|
|
public:
|
|
typedef typename Eigen::internal::traits<TensorEvalToOp>::Scalar Scalar;
|
|
typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
|
|
typedef typename internal::remove_const<typename XprType::CoeffReturnType>::type CoeffReturnType;
|
|
typedef typename MakePointer_<CoeffReturnType>::Type PointerType;
|
|
typedef typename Eigen::internal::nested<TensorEvalToOp>::type Nested;
|
|
typedef typename Eigen::internal::traits<TensorEvalToOp>::StorageKind StorageKind;
|
|
typedef typename Eigen::internal::traits<TensorEvalToOp>::Index Index;
|
|
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvalToOp(PointerType buffer, const XprType& expr)
|
|
: m_xpr(expr), m_buffer(buffer) {}
|
|
|
|
EIGEN_DEVICE_FUNC
|
|
const typename internal::remove_all<typename XprType::Nested>::type&
|
|
expression() const { return m_xpr; }
|
|
|
|
EIGEN_DEVICE_FUNC PointerType buffer() const { return m_buffer; }
|
|
|
|
protected:
|
|
typename XprType::Nested m_xpr;
|
|
PointerType m_buffer;
|
|
};
|
|
|
|
|
|
|
|
template<typename ArgType, typename Device, template <class> class MakePointer_>
|
|
struct TensorEvaluator<const TensorEvalToOp<ArgType, MakePointer_>, Device>
|
|
{
|
|
typedef TensorEvalToOp<ArgType, MakePointer_> XprType;
|
|
typedef typename ArgType::Scalar Scalar;
|
|
typedef typename TensorEvaluator<ArgType, Device>::Dimensions Dimensions;
|
|
typedef typename XprType::Index Index;
|
|
typedef typename internal::remove_const<typename XprType::CoeffReturnType>::type CoeffReturnType;
|
|
typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
|
|
static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
|
|
|
|
enum {
|
|
IsAligned = TensorEvaluator<ArgType, Device>::IsAligned,
|
|
PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
|
|
Layout = TensorEvaluator<ArgType, Device>::Layout,
|
|
CoordAccess = false, // to be implemented
|
|
RawAccess = true
|
|
};
|
|
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
|
|
: m_impl(op.expression(), device), m_device(device),
|
|
m_buffer(op.buffer()), m_op(op), m_expression(op.expression())
|
|
{ }
|
|
|
|
// Used for accessor extraction in SYCL Managed TensorMap:
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const XprType& op() const {
|
|
return m_op;
|
|
}
|
|
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE ~TensorEvaluator() {
|
|
}
|
|
|
|
typedef typename internal::traits<const TensorEvalToOp<ArgType, MakePointer_> >::template MakePointer<CoeffReturnType>::Type DevicePointer;
|
|
EIGEN_DEVICE_FUNC const Dimensions& dimensions() const { return m_impl.dimensions(); }
|
|
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(DevicePointer scalar) {
|
|
EIGEN_UNUSED_VARIABLE(scalar);
|
|
eigen_assert(scalar == NULL);
|
|
return m_impl.evalSubExprsIfNeeded(m_buffer);
|
|
}
|
|
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalScalar(Index i) {
|
|
m_buffer[i] = m_impl.coeff(i);
|
|
}
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalPacket(Index i) {
|
|
internal::pstoret<CoeffReturnType, PacketReturnType, Aligned>(m_buffer + i, m_impl.template packet<TensorEvaluator<ArgType, Device>::IsAligned ? Aligned : Unaligned>(i));
|
|
}
|
|
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
|
|
m_impl.cleanup();
|
|
}
|
|
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
|
|
{
|
|
return m_buffer[index];
|
|
}
|
|
|
|
template<int LoadMode>
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
|
|
{
|
|
return internal::ploadt<PacketReturnType, LoadMode>(m_buffer + index);
|
|
}
|
|
|
|
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const {
|
|
// We assume that evalPacket or evalScalar is called to perform the
|
|
// assignment and account for the cost of the write here.
|
|
return m_impl.costPerCoeff(vectorized) +
|
|
TensorOpCost(0, sizeof(CoeffReturnType), 0, vectorized, PacketSize);
|
|
}
|
|
|
|
EIGEN_DEVICE_FUNC DevicePointer data() const { return m_buffer; }
|
|
ArgType expression() const { return m_expression; }
|
|
|
|
/// required by sycl in order to extract the accessor
|
|
const TensorEvaluator<ArgType, Device>& impl() const { return m_impl; }
|
|
/// added for sycl in order to construct the buffer from the sycl device
|
|
const Device& device() const{return m_device;}
|
|
|
|
private:
|
|
TensorEvaluator<ArgType, Device> m_impl;
|
|
const Device& m_device;
|
|
DevicePointer m_buffer;
|
|
const XprType& m_op;
|
|
const ArgType m_expression;
|
|
};
|
|
|
|
|
|
} // end namespace Eigen
|
|
|
|
#endif // EIGEN_CXX11_TENSOR_TENSOR_EVAL_TO_H
|