2013-11-16 00:03:23 +01:00

329 lines
13 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2013 Christian Seiler <christian@iwakd.de>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_CXX11_TENSOR_TENSOR_H
#define EIGEN_CXX11_TENSOR_TENSOR_H
namespace Eigen {
/** \class Tensor
* \ingroup CXX11_Tensor_Module
*
* \brief The tensor class.
*
* The %Tensor class is the work-horse for all \em dense tensors within Eigen.
*
* The %Tensor class encompasses only dynamic-size objects so far.
*
* The first two template parameters are required:
* \tparam Scalar_ \anchor tensor_tparam_scalar Numeric type, e.g. float, double, int or std::complex<float>.
* User defined scalar types are supported as well (see \ref user_defined_scalars "here").
* \tparam NumIndices_ Number of indices (i.e. rank of the tensor)
*
* The remaining template parameters are optional -- in most cases you don't have to worry about them.
* \tparam Options_ \anchor tensor_tparam_options A combination of either \b #RowMajor or \b #ColMajor, and of either
* \b #AutoAlign or \b #DontAlign.
* The former controls \ref TopicStorageOrders "storage order", and defaults to column-major. The latter controls alignment, which is required
* for vectorization. It defaults to aligning tensors. Note that tensors currently do not support any operations that profit from vectorization.
* Support for such operations (i.e. adding two tensors etc.) is planned.
*
* You can access elements of tensors using normal subscripting:
*
* \code
* Eigen::Tensor<double, 4> t(10, 10, 10, 10);
* t(0, 1, 2, 3) = 42.0;
* \endcode
*
* This class can be extended with the help of the plugin mechanism described on the page
* \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_TENSOR_PLUGIN.
*
* <i><b>Some notes:</b></i>
*
* <dl>
* <dt><b>Relation to other parts of Eigen:</b></dt>
* <dd>The midterm developement goal for this class is to have a similar hierarchy as Eigen uses for matrices, so that
* taking blocks or using tensors in expressions is easily possible, including an interface with the vector/matrix code
* by providing .asMatrix() and .asVector() (or similar) methods for rank 2 and 1 tensors. However, currently, the %Tensor
* class does not provide any of these features and is only available as a stand-alone class that just allows for
* coefficient access. Also, when fixed-size tensors are implemented, the number of template arguments is likely to
* change dramatically.</dd>
* </dl>
*
* \ref TopicStorageOrders
*/
template<typename Scalar_, std::size_t NumIndices_, int Options_ = 0>
class Tensor;
namespace internal {
template<typename Scalar_, std::size_t NumIndices_, int Options_>
struct traits<Tensor<Scalar_, NumIndices_, Options_>>
{
typedef Scalar_ Scalar;
typedef Dense StorageKind;
typedef DenseIndex Index;
enum {
Options = Options_
};
};
template<typename Index, std::size_t NumIndices, std::size_t n, bool RowMajor>
struct tensor_index_linearization_helper
{
constexpr static inline Index run(std::array<Index, NumIndices> const& indices, std::array<Index, NumIndices> const& dimensions)
{
return std_array_get<RowMajor ? n : (NumIndices - n - 1)>(indices) +
std_array_get<RowMajor ? n : (NumIndices - n - 1)>(dimensions) *
tensor_index_linearization_helper<Index, NumIndices, n - 1, RowMajor>::run(indices, dimensions);
}
};
template<typename Index, std::size_t NumIndices, bool RowMajor>
struct tensor_index_linearization_helper<Index, NumIndices, 0, RowMajor>
{
constexpr static inline Index run(std::array<Index, NumIndices> const& indices, std::array<Index, NumIndices> const&)
{
return std_array_get<RowMajor ? 0 : NumIndices - 1>(indices);
}
};
/* Forward-declaration required for the symmetry support. */
template<typename Tensor_, typename Symmetry_, int Flags = 0> class tensor_symmetry_value_setter;
} // end namespace internal
template<typename Scalar_, std::size_t NumIndices_, int Options_>
class Tensor
{
static_assert(NumIndices_ >= 1, "A tensor must have at least one index.");
public:
typedef Tensor<Scalar_, NumIndices_, Options_> Self;
typedef typename internal::traits<Self>::StorageKind StorageKind;
typedef typename internal::traits<Self>::Index Index;
typedef typename internal::traits<Self>::Scalar Scalar;
typedef typename internal::packet_traits<Scalar>::type PacketScalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef Self DenseType;
constexpr static int Options = Options_;
constexpr static std::size_t NumIndices = NumIndices_;
protected:
TensorStorage<Scalar, NumIndices, Dynamic, Options> m_storage;
public:
EIGEN_STRONG_INLINE Index dimension(std::size_t n) const { return m_storage.dimensions()[n]; }
EIGEN_STRONG_INLINE std::array<Index, NumIndices> dimensions() const { return m_storage.dimensions(); }
EIGEN_STRONG_INLINE Index size() const { return internal::array_prod(m_storage.dimensions()); }
EIGEN_STRONG_INLINE Scalar *data() { return m_storage.data(); }
EIGEN_STRONG_INLINE const Scalar *data() const { return m_storage.data(); }
// This makes EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
// work, because that uses base().coeffRef() - and we don't yet
// implement a similar class hierarchy
inline Self& base() { return *this; }
inline const Self& base() const { return *this; }
void setZero()
{
// FIXME: until we have implemented packet access and the
// expression engine w.r.t. nullary ops, use this
// as a kludge. Only works with POD types, but for
// any standard usage, this shouldn't be a problem
memset((void *)data(), 0, size() * sizeof(Scalar));
}
inline Self& operator=(Self const& other)
{
m_storage = other.m_storage;
return *this;
}
template<typename... IndexTypes>
inline const Scalar& coeff(Index firstIndex, Index secondIndex, IndexTypes... otherIndices) const
{
static_assert(sizeof...(otherIndices) + 2 == NumIndices, "Number of indices used to access a tensor coefficient must be equal to the rank of the tensor.");
return coeff(std::array<Index, NumIndices>{{firstIndex, secondIndex, otherIndices...}});
}
inline const Scalar& coeff(const std::array<Index, NumIndices>& indices) const
{
eigen_internal_assert(checkIndexRange(indices));
return m_storage.data()[linearizedIndex(indices)];
}
inline const Scalar& coeff(Index index) const
{
eigen_internal_assert(index >= 0 && index < size());
return m_storage.data()[index];
}
template<typename... IndexTypes>
inline Scalar& coeffRef(Index firstIndex, Index secondIndex, IndexTypes... otherIndices)
{
static_assert(sizeof...(otherIndices) + 2 == NumIndices, "Number of indices used to access a tensor coefficient must be equal to the rank of the tensor.");
return coeffRef(std::array<Index, NumIndices>{{firstIndex, secondIndex, otherIndices...}});
}
inline Scalar& coeffRef(const std::array<Index, NumIndices>& indices)
{
eigen_internal_assert(checkIndexRange(indices));
return m_storage.data()[linearizedIndex(indices)];
}
inline Scalar& coeffRef(Index index)
{
eigen_internal_assert(index >= 0 && index < size());
return m_storage.data()[index];
}
template<typename... IndexTypes>
inline const Scalar& operator()(Index firstIndex, Index secondIndex, IndexTypes... otherIndices) const
{
static_assert(sizeof...(otherIndices) + 2 == NumIndices, "Number of indices used to access a tensor coefficient must be equal to the rank of the tensor.");
return this->operator()(std::array<Index, NumIndices>{{firstIndex, secondIndex, otherIndices...}});
}
inline const Scalar& operator()(const std::array<Index, NumIndices>& indices) const
{
eigen_assert(checkIndexRange(indices));
return coeff(indices);
}
inline const Scalar& operator()(Index index) const
{
eigen_internal_assert(index >= 0 && index < size());
return coeff(index);
}
inline const Scalar& operator[](Index index) const
{
static_assert(NumIndices == 1, "The bracket operator is only for vectors, use the parenthesis operator instead.");
return coeff(index);
}
template<typename... IndexTypes>
inline Scalar& operator()(Index firstIndex, Index secondIndex, IndexTypes... otherIndices)
{
static_assert(sizeof...(otherIndices) + 2 == NumIndices, "Number of indices used to access a tensor coefficient must be equal to the rank of the tensor.");
return operator()(std::array<Index, NumIndices>{{firstIndex, secondIndex, otherIndices...}});
}
inline Scalar& operator()(const std::array<Index, NumIndices>& indices)
{
eigen_assert(checkIndexRange(indices));
return coeffRef(indices);
}
inline Scalar& operator()(Index index)
{
eigen_assert(index >= 0 && index < size());
return coeffRef(index);
}
inline Scalar& operator[](Index index)
{
static_assert(NumIndices == 1, "The bracket operator is only for vectors, use the parenthesis operator instead.");
return coeffRef(index);
}
inline Tensor()
: m_storage()
{
}
inline Tensor(const Self& other)
: m_storage(other.m_storage)
{
}
inline Tensor(Self&& other)
: m_storage(other.m_storage)
{
}
template<typename... IndexTypes>
inline Tensor(Index firstDimension, IndexTypes... otherDimensions)
: m_storage()
{
static_assert(sizeof...(otherDimensions) + 1 == NumIndices, "Number of dimensions used to construct a tensor must be equal to the rank of the tensor.");
resize(std::array<Index, NumIndices>{{firstDimension, otherDimensions...}});
}
inline Tensor(std::array<Index, NumIndices> dimensions)
: m_storage(internal::array_prod(dimensions), dimensions)
{
EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
}
template<typename... IndexTypes>
void resize(Index firstDimension, IndexTypes... otherDimensions)
{
static_assert(sizeof...(otherDimensions) + 1 == NumIndices, "Number of dimensions used to resize a tensor must be equal to the rank of the tensor.");
resize(std::array<Index, NumIndices>{{firstDimension, otherDimensions...}});
}
void resize(const std::array<Index, NumIndices>& dimensions)
{
std::size_t i;
Index size = Index(1);
for (i = 0; i < NumIndices; i++) {
internal::check_rows_cols_for_overflow<Dynamic>::run(size, dimensions[i]);
size *= dimensions[i];
}
#ifdef EIGEN_INITIALIZE_COEFFS
bool size_changed = size != this->size();
m_storage.resize(size, dimensions);
if(size_changed) EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
#else
m_storage.resize(size, dimensions);
#endif
}
template<typename Symmetry_, typename... IndexTypes>
internal::tensor_symmetry_value_setter<Self, Symmetry_> symCoeff(const Symmetry_& symmetry, Index firstIndex, IndexTypes... otherIndices)
{
return symCoeff(symmetry, std::array<Index, NumIndices>{{firstIndex, otherIndices...}});
}
template<typename Symmetry_, typename... IndexTypes>
internal::tensor_symmetry_value_setter<Self, Symmetry_> symCoeff(const Symmetry_& symmetry, std::array<Index, NumIndices> const& indices)
{
return internal::tensor_symmetry_value_setter<Self, Symmetry_>(*this, symmetry, indices);
}
protected:
bool checkIndexRange(const std::array<Index, NumIndices>& indices) const
{
using internal::array_apply_and_reduce;
using internal::array_zip_and_reduce;
using internal::greater_equal_zero_op;
using internal::logical_and_op;
using internal::lesser_op;
return
// check whether the indices are all >= 0
array_apply_and_reduce<logical_and_op, greater_equal_zero_op>(indices) &&
// check whether the indices fit in the dimensions
array_zip_and_reduce<logical_and_op, lesser_op>(indices, m_storage.dimensions());
}
inline Index linearizedIndex(const std::array<Index, NumIndices>& indices) const
{
return internal::tensor_index_linearization_helper<Index, NumIndices, NumIndices - 1, Options&RowMajor>::run(indices, m_storage.dimensions());
}
};
} // end namespace Eigen
#endif // EIGEN_CXX11_TENSOR_TENSOR_H
/*
* kate: space-indent on; indent-width 2; mixedindent off; indent-mode cstyle;
*/