mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-08-01 17:50:40 +08:00
200 lines
7.2 KiB
C++
200 lines
7.2 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2014 Pedro Gonnet (pedro.gonnet@gmail.com)
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#ifndef EIGEN_MATH_FUNCTIONS_AVX_H
|
|
#define EIGEN_MATH_FUNCTIONS_AVX_H
|
|
|
|
/* The sin and cos functions of this file are loosely derived from
|
|
* Julien Pommier's sse math library: http://gruntthepeon.free.fr/ssemath/
|
|
*/
|
|
|
|
namespace Eigen {
|
|
|
|
namespace internal {
|
|
|
|
template <>
|
|
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8f
|
|
psin<Packet8f>(const Packet8f& _x) {
|
|
return psin_float(_x);
|
|
}
|
|
|
|
template <>
|
|
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8f
|
|
pcos<Packet8f>(const Packet8f& _x) {
|
|
return pcos_float(_x);
|
|
}
|
|
|
|
template <>
|
|
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8f
|
|
plog<Packet8f>(const Packet8f& _x) {
|
|
return plog_float(_x);
|
|
}
|
|
|
|
template <>
|
|
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet4d
|
|
plog<Packet4d>(const Packet4d& _x) {
|
|
return plog_double(_x);
|
|
}
|
|
|
|
template <>
|
|
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8f
|
|
plog2<Packet8f>(const Packet8f& _x) {
|
|
return plog2_float(_x);
|
|
}
|
|
|
|
template <>
|
|
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet4d
|
|
plog2<Packet4d>(const Packet4d& _x) {
|
|
return plog2_double(_x);
|
|
}
|
|
|
|
template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
|
|
Packet8f plog1p<Packet8f>(const Packet8f& _x) {
|
|
return generic_plog1p(_x);
|
|
}
|
|
|
|
template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
|
|
Packet8f pexpm1<Packet8f>(const Packet8f& _x) {
|
|
return generic_expm1(_x);
|
|
}
|
|
|
|
// Exponential function. Works by writing "x = m*log(2) + r" where
|
|
// "m = floor(x/log(2)+1/2)" and "r" is the remainder. The result is then
|
|
// "exp(x) = 2^m*exp(r)" where exp(r) is in the range [-1,1).
|
|
template <>
|
|
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8f
|
|
pexp<Packet8f>(const Packet8f& _x) {
|
|
return pexp_float(_x);
|
|
}
|
|
|
|
// Hyperbolic Tangent function.
|
|
template <>
|
|
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8f
|
|
ptanh<Packet8f>(const Packet8f& _x) {
|
|
return internal::generic_fast_tanh_float(_x);
|
|
}
|
|
|
|
// Exponential function for doubles.
|
|
template <>
|
|
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet4d
|
|
pexp<Packet4d>(const Packet4d& _x) {
|
|
return pexp_double(_x);
|
|
}
|
|
|
|
// Functions for sqrt.
|
|
// The EIGEN_FAST_MATH version uses the _mm_rsqrt_ps approximation and one step
|
|
// of Newton's method, at a cost of 1-2 bits of precision as opposed to the
|
|
// exact solution. It does not handle +inf, or denormalized numbers correctly.
|
|
// The main advantage of this approach is not just speed, but also the fact that
|
|
// it can be inlined and pipelined with other computations, further reducing its
|
|
// effective latency. This is similar to Quake3's fast inverse square root.
|
|
// For detail see here: http://www.beyond3d.com/content/articles/8/
|
|
#if EIGEN_FAST_MATH
|
|
template <>
|
|
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8f
|
|
psqrt<Packet8f>(const Packet8f& _x) {
|
|
Packet8f half = pmul(_x, pset1<Packet8f>(.5f));
|
|
Packet8f denormal_mask = _mm256_and_ps(
|
|
_mm256_cmp_ps(_x, pset1<Packet8f>((std::numeric_limits<float>::min)()),
|
|
_CMP_LT_OQ),
|
|
_mm256_cmp_ps(_x, _mm256_setzero_ps(), _CMP_GE_OQ));
|
|
|
|
// Compute approximate reciprocal sqrt.
|
|
Packet8f x = _mm256_rsqrt_ps(_x);
|
|
// Do a single step of Newton's iteration.
|
|
x = pmul(x, psub(pset1<Packet8f>(1.5f), pmul(half, pmul(x,x))));
|
|
// Flush results for denormals to zero.
|
|
return _mm256_andnot_ps(denormal_mask, pmul(_x,x));
|
|
}
|
|
#else
|
|
template <> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
|
|
Packet8f psqrt<Packet8f>(const Packet8f& _x) {
|
|
return _mm256_sqrt_ps(_x);
|
|
}
|
|
#endif
|
|
template <> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
|
|
Packet4d psqrt<Packet4d>(const Packet4d& _x) {
|
|
return _mm256_sqrt_pd(_x);
|
|
}
|
|
#if EIGEN_FAST_MATH
|
|
|
|
template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
|
|
Packet8f prsqrt<Packet8f>(const Packet8f& _x) {
|
|
_EIGEN_DECLARE_CONST_Packet8f_FROM_INT(inf, 0x7f800000);
|
|
_EIGEN_DECLARE_CONST_Packet8f(one_point_five, 1.5f);
|
|
_EIGEN_DECLARE_CONST_Packet8f(minus_half, -0.5f);
|
|
_EIGEN_DECLARE_CONST_Packet8f_FROM_INT(flt_min, 0x00800000);
|
|
|
|
Packet8f neg_half = pmul(_x, p8f_minus_half);
|
|
|
|
// select only the inverse sqrt of positive normal inputs (denormals are
|
|
// flushed to zero and cause infs as well).
|
|
Packet8f lt_min_mask = _mm256_cmp_ps(_x, p8f_flt_min, _CMP_LT_OQ);
|
|
Packet8f inf_mask = _mm256_cmp_ps(_x, p8f_inf, _CMP_EQ_OQ);
|
|
Packet8f not_normal_finite_mask = _mm256_or_ps(lt_min_mask, inf_mask);
|
|
|
|
// Compute an approximate result using the rsqrt intrinsic.
|
|
Packet8f y_approx = _mm256_rsqrt_ps(_x);
|
|
|
|
// Do a single step of Newton-Raphson iteration to improve the approximation.
|
|
// This uses the formula y_{n+1} = y_n * (1.5 - y_n * (0.5 * x) * y_n).
|
|
// It is essential to evaluate the inner term like this because forming
|
|
// y_n^2 may over- or underflow.
|
|
Packet8f y_newton = pmul(y_approx, pmadd(y_approx, pmul(neg_half, y_approx), p8f_one_point_five));
|
|
|
|
// Select the result of the Newton-Raphson step for positive normal arguments.
|
|
// For other arguments, choose the output of the intrinsic. This will
|
|
// return rsqrt(+inf) = 0, rsqrt(x) = NaN if x < 0, and rsqrt(x) = +inf if
|
|
// x is zero or a positive denormalized float (equivalent to flushing positive
|
|
// denormalized inputs to zero).
|
|
return pselect<Packet8f>(not_normal_finite_mask, y_approx, y_newton);
|
|
}
|
|
|
|
#else
|
|
template <> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
|
|
Packet8f prsqrt<Packet8f>(const Packet8f& _x) {
|
|
_EIGEN_DECLARE_CONST_Packet8f(one, 1.0f);
|
|
return _mm256_div_ps(p8f_one, _mm256_sqrt_ps(_x));
|
|
}
|
|
#endif
|
|
|
|
template <> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
|
|
Packet4d prsqrt<Packet4d>(const Packet4d& _x) {
|
|
_EIGEN_DECLARE_CONST_Packet4d(one, 1.0);
|
|
return _mm256_div_pd(p4d_one, _mm256_sqrt_pd(_x));
|
|
}
|
|
|
|
F16_PACKET_FUNCTION(Packet8f, Packet8h, psin)
|
|
F16_PACKET_FUNCTION(Packet8f, Packet8h, pcos)
|
|
F16_PACKET_FUNCTION(Packet8f, Packet8h, plog)
|
|
F16_PACKET_FUNCTION(Packet8f, Packet8h, plog2)
|
|
F16_PACKET_FUNCTION(Packet8f, Packet8h, plog1p)
|
|
F16_PACKET_FUNCTION(Packet8f, Packet8h, pexpm1)
|
|
F16_PACKET_FUNCTION(Packet8f, Packet8h, pexp)
|
|
F16_PACKET_FUNCTION(Packet8f, Packet8h, ptanh)
|
|
F16_PACKET_FUNCTION(Packet8f, Packet8h, psqrt)
|
|
F16_PACKET_FUNCTION(Packet8f, Packet8h, prsqrt)
|
|
|
|
BF16_PACKET_FUNCTION(Packet8f, Packet8bf, psin)
|
|
BF16_PACKET_FUNCTION(Packet8f, Packet8bf, pcos)
|
|
BF16_PACKET_FUNCTION(Packet8f, Packet8bf, plog)
|
|
BF16_PACKET_FUNCTION(Packet8f, Packet8bf, plog2)
|
|
BF16_PACKET_FUNCTION(Packet8f, Packet8bf, plog1p)
|
|
BF16_PACKET_FUNCTION(Packet8f, Packet8bf, pexpm1)
|
|
BF16_PACKET_FUNCTION(Packet8f, Packet8bf, pexp)
|
|
BF16_PACKET_FUNCTION(Packet8f, Packet8bf, ptanh)
|
|
BF16_PACKET_FUNCTION(Packet8f, Packet8bf, psqrt)
|
|
BF16_PACKET_FUNCTION(Packet8f, Packet8bf, prsqrt)
|
|
|
|
} // end namespace internal
|
|
|
|
} // end namespace Eigen
|
|
|
|
#endif // EIGEN_MATH_FUNCTIONS_AVX_H
|