mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-05-01 00:04:14 +08:00

* make Matrix2f (and similar) vectorized using linear path * fix a couple of warnings and compilation issues with ICC and gcc 3.3/3.4 (cannot get Transform compiles with gcc 3.3/3.4, see the FIXME)
412 lines
15 KiB
C++
412 lines
15 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra. Eigen itself is part of the KDE project.
|
|
//
|
|
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#ifndef EIGEN_TRANSFORM_H
|
|
#define EIGEN_TRANSFORM_H
|
|
|
|
/** \class Transform
|
|
*
|
|
* \brief Represents an homogeneous transformation in a N dimensional space
|
|
*
|
|
* \param _Scalar the scalar type, i.e., the type of the coefficients
|
|
* \param _Dim the dimension of the space
|
|
*
|
|
* The homography is internally represented and stored as a (Dim+1)^2 matrix which
|
|
* is available through the matrix() method.
|
|
*
|
|
* Conversion methods from/to Qt's QMatrix are available if the preprocessor token
|
|
* EIGEN_QT_SUPPORT is defined.
|
|
*
|
|
*/
|
|
template<typename _Scalar, int _Dim>
|
|
class Transform
|
|
{
|
|
public:
|
|
|
|
enum { Dim = _Dim, HDim = _Dim+1 };
|
|
/** the scalar type of the coefficients */
|
|
typedef _Scalar Scalar;
|
|
typedef Matrix<Scalar,HDim,HDim> MatrixType;
|
|
typedef Matrix<Scalar,Dim,Dim> AffineMatrixType;
|
|
typedef Block<MatrixType,Dim,Dim> AffineMatrixRef;
|
|
typedef Matrix<Scalar,Dim,1> VectorType;
|
|
typedef Block<MatrixType,Dim,1> VectorRef;
|
|
|
|
protected:
|
|
|
|
MatrixType m_matrix;
|
|
|
|
template<typename Other,
|
|
int OtherRows=Other::RowsAtCompileTime,
|
|
int OtherCols=Other::ColsAtCompileTime>
|
|
struct ei_transform_product_impl;
|
|
|
|
// FIXME these specializations of ei_transform_product_impl does not work with gcc 3.3 and 3.4 because
|
|
// Dim depends on a template parameter. Replacing Dim by 3 (for the 3D case) works.
|
|
|
|
// note that these specializations have to be defined here,
|
|
// otherwise some compilers (at least ICC and NVCC) complain about
|
|
// the use of Dim in the specialization parameters.
|
|
template<typename Other>
|
|
struct ei_transform_product_impl<Other,Dim+1,Dim+1>
|
|
{
|
|
typedef typename Transform<Scalar,Dim>::MatrixType MatrixType;
|
|
typedef typename ProductReturnType<MatrixType,Other>::Type ResultType;
|
|
static ResultType run(const Transform<Scalar,Dim>& tr, const Other& other)
|
|
{ return tr.matrix() * other; }
|
|
};
|
|
|
|
template<typename Other>
|
|
struct ei_transform_product_impl<Other,Dim+1,1>
|
|
{
|
|
typedef typename Transform<Scalar,Dim>::MatrixType MatrixType;
|
|
typedef typename ProductReturnType<MatrixType,Other>::Type ResultType;
|
|
static ResultType run(const Transform<Scalar,Dim>& tr, const Other& other)
|
|
{ return tr.matrix() * other; }
|
|
};
|
|
|
|
template<typename Other>
|
|
struct ei_transform_product_impl<Other,Dim,1>
|
|
{
|
|
typedef typename Transform<Scalar,Dim>::AffineMatrixRef MatrixType;
|
|
typedef const CwiseUnaryOp<
|
|
ei_scalar_multiple_op<Scalar>,
|
|
NestByValue<CwiseBinaryOp<
|
|
ei_scalar_sum_op<Scalar>,
|
|
NestByValue<typename ProductReturnType<NestByValue<MatrixType>,Other>::Type >,
|
|
NestByValue<typename Transform<Scalar,Dim>::VectorRef> > >
|
|
> ResultType;
|
|
// FIXME shall we offer an optimized version when the last row is know to be 0,0...,0,1 ?
|
|
static ResultType run(const Transform<Scalar,Dim>& tr, const Other& other)
|
|
{ return ((tr.affine().nestByValue() * other).nestByValue() + tr.translation().nestByValue()).nestByValue()
|
|
* (Scalar(1) / ( (tr.matrix().template block<1,Dim>(Dim,0) * other).coeff(0) + tr.matrix().coeff(Dim,Dim))); }
|
|
};
|
|
|
|
public:
|
|
|
|
/** Default constructor without initialization of the coefficients. */
|
|
Transform() { }
|
|
|
|
inline Transform(const Transform& other)
|
|
{ m_matrix = other.m_matrix; }
|
|
|
|
inline Transform& operator=(const Transform& other)
|
|
{ m_matrix = other.m_matrix; return *this; }
|
|
|
|
template<typename OtherDerived>
|
|
inline explicit Transform(const MatrixBase<OtherDerived>& other)
|
|
{ m_matrix = other; }
|
|
|
|
template<typename OtherDerived>
|
|
inline Transform& operator=(const MatrixBase<OtherDerived>& other)
|
|
{ m_matrix = other; return *this; }
|
|
|
|
#ifdef EIGEN_QT_SUPPORT
|
|
inline Transform(const QMatrix& other);
|
|
inline Transform& operator=(const QMatrix& other);
|
|
inline QMatrix toQMatrix(void) const;
|
|
#endif
|
|
|
|
/** \returns a read-only expression of the transformation matrix */
|
|
inline const MatrixType& matrix() const { return m_matrix; }
|
|
/** \returns a writable expression of the transformation matrix */
|
|
inline MatrixType& matrix() { return m_matrix; }
|
|
|
|
/** \returns a read-only expression of the affine (linear) part of the transformation */
|
|
inline const AffineMatrixRef affine() const { return m_matrix.template block<Dim,Dim>(0,0); }
|
|
/** \returns a writable expression of the affine (linear) part of the transformation */
|
|
inline AffineMatrixRef affine() { return m_matrix.template block<Dim,Dim>(0,0); }
|
|
|
|
/** \returns a read-only expression of the translation vector of the transformation */
|
|
inline const VectorRef translation() const { return m_matrix.template block<Dim,1>(0,Dim); }
|
|
/** \returns a writable expression of the translation vector of the transformation */
|
|
inline VectorRef translation() { return m_matrix.template block<Dim,1>(0,Dim); }
|
|
|
|
template<typename OtherDerived>
|
|
const typename ei_transform_product_impl<OtherDerived>::ResultType
|
|
operator * (const MatrixBase<OtherDerived> &other) const;
|
|
|
|
/** Contatenates two transformations */
|
|
const typename ProductReturnType<MatrixType,MatrixType>::Type
|
|
operator * (const Transform& other) const
|
|
{ return m_matrix * other.matrix(); }
|
|
|
|
void setIdentity() { m_matrix.setIdentity(); }
|
|
|
|
template<typename OtherDerived>
|
|
Transform& scale(const MatrixBase<OtherDerived> &other);
|
|
|
|
template<typename OtherDerived>
|
|
Transform& prescale(const MatrixBase<OtherDerived> &other);
|
|
|
|
template<typename OtherDerived>
|
|
Transform& translate(const MatrixBase<OtherDerived> &other);
|
|
|
|
template<typename OtherDerived>
|
|
Transform& pretranslate(const MatrixBase<OtherDerived> &other);
|
|
|
|
template<typename RotationType>
|
|
Transform& rotate(const RotationType& rotation);
|
|
|
|
template<typename RotationType>
|
|
Transform& prerotate(const RotationType& rotation);
|
|
|
|
template<typename OtherDerived>
|
|
Transform& shear(Scalar sx, Scalar sy);
|
|
|
|
template<typename OtherDerived>
|
|
Transform& preshear(Scalar sx, Scalar sy);
|
|
|
|
AffineMatrixType extractRotation() const;
|
|
AffineMatrixType extractRotationNoShear() const;
|
|
|
|
template<typename PositionDerived, typename OrientationType, typename ScaleDerived>
|
|
Transform& fromPositionOrientationScale(const MatrixBase<PositionDerived> &position,
|
|
const OrientationType& orientation, const MatrixBase<ScaleDerived> &scale);
|
|
|
|
const Inverse<MatrixType, false> inverse() const
|
|
{ return m_matrix.inverse(); }
|
|
|
|
protected:
|
|
|
|
};
|
|
|
|
#ifdef EIGEN_QT_SUPPORT
|
|
/** Initialises \c *this from a QMatrix assuming the dimension is 2.
|
|
*/
|
|
template<typename Scalar, int Dim>
|
|
Transform<Scalar,Dim>::Transform(const QMatrix& other)
|
|
{
|
|
*this = other;
|
|
}
|
|
|
|
/** Set \c *this from a QMatrix assuming the dimension is 2.
|
|
*/
|
|
template<typename Scalar, int Dim>
|
|
Transform<Scalar,Dim>& Transform<Scalar,Dim>::operator=(const QMatrix& other)
|
|
{
|
|
EIGEN_STATIC_ASSERT(Dim==2, you_did_a_programming_error);
|
|
m_matrix << other.m11(), other.m21(), other.dx(),
|
|
other.m12(), other.m22(), other.dy(),
|
|
0, 0, 1;
|
|
return *this;
|
|
}
|
|
|
|
/** \returns a QMatrix from \c *this assuming the dimension is 2.
|
|
*/
|
|
template<typename Scalar, int Dim>
|
|
QMatrix Transform<Scalar,Dim>::toQMatrix(void) const
|
|
{
|
|
EIGEN_STATIC_ASSERT(Dim==2, you_did_a_programming_error);
|
|
return QMatrix( other.coeffRef(0,0), other.coeffRef(1,0),
|
|
other.coeffRef(0,1), other.coeffRef(1,1),
|
|
other.coeffRef(0,2), other.coeffRef(1,2),
|
|
}
|
|
#endif
|
|
|
|
template<typename Scalar, int Dim>
|
|
template<typename OtherDerived>
|
|
const typename Transform<Scalar,Dim>::template ei_transform_product_impl<OtherDerived>::ResultType
|
|
Transform<Scalar,Dim>::operator*(const MatrixBase<OtherDerived> &other) const
|
|
{
|
|
return ei_transform_product_impl<OtherDerived>::run(*this,other.derived());
|
|
}
|
|
|
|
/** Applies on the right the non uniform scale transformation represented
|
|
* by the vector \a other to \c *this and returns a reference to \c *this.
|
|
* \sa prescale()
|
|
*/
|
|
template<typename Scalar, int Dim>
|
|
template<typename OtherDerived>
|
|
Transform<Scalar,Dim>&
|
|
Transform<Scalar,Dim>::scale(const MatrixBase<OtherDerived> &other)
|
|
{
|
|
EIGEN_STATIC_ASSERT(int(OtherDerived::IsVectorAtCompileTime)
|
|
&& int(OtherDerived::SizeAtCompileTime)==int(Dim), you_did_a_programming_error);
|
|
affine() = (affine() * other.asDiagonal()).lazy();
|
|
return *this;
|
|
}
|
|
|
|
/** Applies on the left the non uniform scale transformation represented
|
|
* by the vector \a other to \c *this and returns a reference to \c *this.
|
|
* \sa scale()
|
|
*/
|
|
template<typename Scalar, int Dim>
|
|
template<typename OtherDerived>
|
|
Transform<Scalar,Dim>&
|
|
Transform<Scalar,Dim>::prescale(const MatrixBase<OtherDerived> &other)
|
|
{
|
|
EIGEN_STATIC_ASSERT(int(OtherDerived::IsVectorAtCompileTime)
|
|
&& int(OtherDerived::SizeAtCompileTime)==int(Dim), you_did_a_programming_error);
|
|
m_matrix.template block<Dim,HDim>(0,0) = (other.asDiagonal() * m_matrix.template block<Dim,HDim>(0,0)).lazy();
|
|
return *this;
|
|
}
|
|
|
|
/** Applies on the right the translation matrix represented by the vector \a other
|
|
* to \c *this and returns a reference to \c *this.
|
|
* \sa pretranslate()
|
|
*/
|
|
template<typename Scalar, int Dim>
|
|
template<typename OtherDerived>
|
|
Transform<Scalar,Dim>&
|
|
Transform<Scalar,Dim>::translate(const MatrixBase<OtherDerived> &other)
|
|
{
|
|
EIGEN_STATIC_ASSERT(int(OtherDerived::IsVectorAtCompileTime)
|
|
&& int(OtherDerived::SizeAtCompileTime)==int(Dim), you_did_a_programming_error);
|
|
translation() += affine() * other;
|
|
return *this;
|
|
}
|
|
|
|
/** Applies on the left the translation matrix represented by the vector \a other
|
|
* to \c *this and returns a reference to \c *this.
|
|
* \sa translate()
|
|
*/
|
|
template<typename Scalar, int Dim>
|
|
template<typename OtherDerived>
|
|
Transform<Scalar,Dim>&
|
|
Transform<Scalar,Dim>::pretranslate(const MatrixBase<OtherDerived> &other)
|
|
{
|
|
EIGEN_STATIC_ASSERT(int(OtherDerived::IsVectorAtCompileTime)
|
|
&& int(OtherDerived::SizeAtCompileTime)==int(Dim), you_did_a_programming_error);
|
|
translation() += other;
|
|
return *this;
|
|
}
|
|
|
|
/** Applies on the right the rotation represented by the rotation \a rotation
|
|
* to \c *this and returns a reference to \c *this.
|
|
*
|
|
* The template parameter \a RotationType is the type of the rotation which
|
|
* must be registered by ToRotationMatrix<>.
|
|
*
|
|
* Natively supported types includes:
|
|
* - any scalar (2D),
|
|
* - a Dim x Dim matrix expression,
|
|
* - Quaternion (3D),
|
|
* - AngleAxis (3D)
|
|
*
|
|
* This mechanism is easily extendable to support user types such as Euler angles,
|
|
* or a pair of Quaternion for 4D rotations.
|
|
*
|
|
* \sa rotate(Scalar), class Quaternion, class AngleAxis, class ToRotationMatrix, prerotate(RotationType)
|
|
*/
|
|
template<typename Scalar, int Dim>
|
|
template<typename RotationType>
|
|
Transform<Scalar,Dim>&
|
|
Transform<Scalar,Dim>::rotate(const RotationType& rotation)
|
|
{
|
|
affine() *= ToRotationMatrix<Scalar,Dim,RotationType>::convert(rotation);
|
|
return *this;
|
|
}
|
|
|
|
/** Applies on the left the rotation represented by the rotation \a rotation
|
|
* to \c *this and returns a reference to \c *this.
|
|
*
|
|
* See rotate(RotationType) for further details.
|
|
*
|
|
* \sa rotate(RotationType), rotate(Scalar)
|
|
*/
|
|
template<typename Scalar, int Dim>
|
|
template<typename RotationType>
|
|
Transform<Scalar,Dim>&
|
|
Transform<Scalar,Dim>::prerotate(const RotationType& rotation)
|
|
{
|
|
m_matrix.template block<Dim,HDim>(0,0) = ToRotationMatrix<Scalar,Dim,RotationType>::convert(rotation)
|
|
* m_matrix.template block<Dim,HDim>(0,0);
|
|
return *this;
|
|
}
|
|
|
|
/** Applies on the right the shear transformation represented
|
|
* by the vector \a other to \c *this and returns a reference to \c *this.
|
|
* \warning 2D only.
|
|
* \sa preshear()
|
|
*/
|
|
template<typename Scalar, int Dim>
|
|
template<typename OtherDerived>
|
|
Transform<Scalar,Dim>&
|
|
Transform<Scalar,Dim>::shear(Scalar sx, Scalar sy)
|
|
{
|
|
EIGEN_STATIC_ASSERT(int(OtherDerived::IsVectorAtCompileTime)
|
|
&& int(OtherDerived::SizeAtCompileTime)==int(Dim) && int(Dim)==2, you_did_a_programming_error);
|
|
VectorType tmp = affine().col(0)*sy + affine().col(1);
|
|
affine() << affine().col(0) + affine().col(1)*sx, tmp;
|
|
return *this;
|
|
}
|
|
|
|
/** Applies on the left the shear transformation represented
|
|
* by the vector \a other to \c *this and returns a reference to \c *this.
|
|
* \warning 2D only.
|
|
* \sa shear()
|
|
*/
|
|
template<typename Scalar, int Dim>
|
|
template<typename OtherDerived>
|
|
Transform<Scalar,Dim>&
|
|
Transform<Scalar,Dim>::preshear(Scalar sx, Scalar sy)
|
|
{
|
|
EIGEN_STATIC_ASSERT(int(OtherDerived::IsVectorAtCompileTime)
|
|
&& int(OtherDerived::SizeAtCompileTime)==int(Dim), you_did_a_programming_error);
|
|
m_matrix.template block<Dim,HDim>(0,0) = AffineMatrixType(1, sx, sy, 1) * m_matrix.template block<Dim,HDim>(0,0);
|
|
return *this;
|
|
}
|
|
|
|
/** \returns the rotation part of the transformation using a QR decomposition.
|
|
* \sa extractRotationNoShear()
|
|
*/
|
|
template<typename Scalar, int Dim>
|
|
typename Transform<Scalar,Dim>::AffineMatrixType
|
|
Transform<Scalar,Dim>::extractRotation() const
|
|
{
|
|
return affine().qr().matrixQ();
|
|
}
|
|
|
|
/** \returns the rotation part of the transformation assuming no shear in
|
|
* the affine part.
|
|
* \sa extractRotation()
|
|
*/
|
|
template<typename Scalar, int Dim>
|
|
typename Transform<Scalar,Dim>::AffineMatrixType
|
|
Transform<Scalar,Dim>::extractRotationNoShear() const
|
|
{
|
|
return affine().cwiseAbs2()
|
|
.verticalRedux(ei_scalar_sum_op<Scalar>()).cwiseSqrt();
|
|
}
|
|
|
|
/** Convenient method to set \c *this from a position, orientation and scale
|
|
* of a 3D object.
|
|
*/
|
|
template<typename Scalar, int Dim>
|
|
template<typename PositionDerived, typename OrientationType, typename ScaleDerived>
|
|
Transform<Scalar,Dim>&
|
|
Transform<Scalar,Dim>::fromPositionOrientationScale(const MatrixBase<PositionDerived> &position,
|
|
const OrientationType& orientation, const MatrixBase<ScaleDerived> &scale)
|
|
{
|
|
affine() = ToRotationMatrix<Scalar,Dim,OrientationType>::convert(orientation);
|
|
translation() = position;
|
|
m_matrix(Dim,Dim) = 1.;
|
|
m_matrix.template block<1,Dim>(Dim,0).setZero();
|
|
affine() *= scale.asDiagonal();
|
|
return *this;
|
|
}
|
|
|
|
#endif // EIGEN_TRANSFORM_H
|