eigen/Eigen/src/Geometry/Transform.h
Gael Guennebaud fb4a151982 * more cleaning in Product
* make Matrix2f (and similar) vectorized using linear path
* fix a couple of warnings and compilation issues with ICC and gcc 3.3/3.4
  (cannot get Transform compiles with gcc 3.3/3.4, see the FIXME)
2008-06-19 23:00:51 +00:00

412 lines
15 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_TRANSFORM_H
#define EIGEN_TRANSFORM_H
/** \class Transform
*
* \brief Represents an homogeneous transformation in a N dimensional space
*
* \param _Scalar the scalar type, i.e., the type of the coefficients
* \param _Dim the dimension of the space
*
* The homography is internally represented and stored as a (Dim+1)^2 matrix which
* is available through the matrix() method.
*
* Conversion methods from/to Qt's QMatrix are available if the preprocessor token
* EIGEN_QT_SUPPORT is defined.
*
*/
template<typename _Scalar, int _Dim>
class Transform
{
public:
enum { Dim = _Dim, HDim = _Dim+1 };
/** the scalar type of the coefficients */
typedef _Scalar Scalar;
typedef Matrix<Scalar,HDim,HDim> MatrixType;
typedef Matrix<Scalar,Dim,Dim> AffineMatrixType;
typedef Block<MatrixType,Dim,Dim> AffineMatrixRef;
typedef Matrix<Scalar,Dim,1> VectorType;
typedef Block<MatrixType,Dim,1> VectorRef;
protected:
MatrixType m_matrix;
template<typename Other,
int OtherRows=Other::RowsAtCompileTime,
int OtherCols=Other::ColsAtCompileTime>
struct ei_transform_product_impl;
// FIXME these specializations of ei_transform_product_impl does not work with gcc 3.3 and 3.4 because
// Dim depends on a template parameter. Replacing Dim by 3 (for the 3D case) works.
// note that these specializations have to be defined here,
// otherwise some compilers (at least ICC and NVCC) complain about
// the use of Dim in the specialization parameters.
template<typename Other>
struct ei_transform_product_impl<Other,Dim+1,Dim+1>
{
typedef typename Transform<Scalar,Dim>::MatrixType MatrixType;
typedef typename ProductReturnType<MatrixType,Other>::Type ResultType;
static ResultType run(const Transform<Scalar,Dim>& tr, const Other& other)
{ return tr.matrix() * other; }
};
template<typename Other>
struct ei_transform_product_impl<Other,Dim+1,1>
{
typedef typename Transform<Scalar,Dim>::MatrixType MatrixType;
typedef typename ProductReturnType<MatrixType,Other>::Type ResultType;
static ResultType run(const Transform<Scalar,Dim>& tr, const Other& other)
{ return tr.matrix() * other; }
};
template<typename Other>
struct ei_transform_product_impl<Other,Dim,1>
{
typedef typename Transform<Scalar,Dim>::AffineMatrixRef MatrixType;
typedef const CwiseUnaryOp<
ei_scalar_multiple_op<Scalar>,
NestByValue<CwiseBinaryOp<
ei_scalar_sum_op<Scalar>,
NestByValue<typename ProductReturnType<NestByValue<MatrixType>,Other>::Type >,
NestByValue<typename Transform<Scalar,Dim>::VectorRef> > >
> ResultType;
// FIXME shall we offer an optimized version when the last row is know to be 0,0...,0,1 ?
static ResultType run(const Transform<Scalar,Dim>& tr, const Other& other)
{ return ((tr.affine().nestByValue() * other).nestByValue() + tr.translation().nestByValue()).nestByValue()
* (Scalar(1) / ( (tr.matrix().template block<1,Dim>(Dim,0) * other).coeff(0) + tr.matrix().coeff(Dim,Dim))); }
};
public:
/** Default constructor without initialization of the coefficients. */
Transform() { }
inline Transform(const Transform& other)
{ m_matrix = other.m_matrix; }
inline Transform& operator=(const Transform& other)
{ m_matrix = other.m_matrix; return *this; }
template<typename OtherDerived>
inline explicit Transform(const MatrixBase<OtherDerived>& other)
{ m_matrix = other; }
template<typename OtherDerived>
inline Transform& operator=(const MatrixBase<OtherDerived>& other)
{ m_matrix = other; return *this; }
#ifdef EIGEN_QT_SUPPORT
inline Transform(const QMatrix& other);
inline Transform& operator=(const QMatrix& other);
inline QMatrix toQMatrix(void) const;
#endif
/** \returns a read-only expression of the transformation matrix */
inline const MatrixType& matrix() const { return m_matrix; }
/** \returns a writable expression of the transformation matrix */
inline MatrixType& matrix() { return m_matrix; }
/** \returns a read-only expression of the affine (linear) part of the transformation */
inline const AffineMatrixRef affine() const { return m_matrix.template block<Dim,Dim>(0,0); }
/** \returns a writable expression of the affine (linear) part of the transformation */
inline AffineMatrixRef affine() { return m_matrix.template block<Dim,Dim>(0,0); }
/** \returns a read-only expression of the translation vector of the transformation */
inline const VectorRef translation() const { return m_matrix.template block<Dim,1>(0,Dim); }
/** \returns a writable expression of the translation vector of the transformation */
inline VectorRef translation() { return m_matrix.template block<Dim,1>(0,Dim); }
template<typename OtherDerived>
const typename ei_transform_product_impl<OtherDerived>::ResultType
operator * (const MatrixBase<OtherDerived> &other) const;
/** Contatenates two transformations */
const typename ProductReturnType<MatrixType,MatrixType>::Type
operator * (const Transform& other) const
{ return m_matrix * other.matrix(); }
void setIdentity() { m_matrix.setIdentity(); }
template<typename OtherDerived>
Transform& scale(const MatrixBase<OtherDerived> &other);
template<typename OtherDerived>
Transform& prescale(const MatrixBase<OtherDerived> &other);
template<typename OtherDerived>
Transform& translate(const MatrixBase<OtherDerived> &other);
template<typename OtherDerived>
Transform& pretranslate(const MatrixBase<OtherDerived> &other);
template<typename RotationType>
Transform& rotate(const RotationType& rotation);
template<typename RotationType>
Transform& prerotate(const RotationType& rotation);
template<typename OtherDerived>
Transform& shear(Scalar sx, Scalar sy);
template<typename OtherDerived>
Transform& preshear(Scalar sx, Scalar sy);
AffineMatrixType extractRotation() const;
AffineMatrixType extractRotationNoShear() const;
template<typename PositionDerived, typename OrientationType, typename ScaleDerived>
Transform& fromPositionOrientationScale(const MatrixBase<PositionDerived> &position,
const OrientationType& orientation, const MatrixBase<ScaleDerived> &scale);
const Inverse<MatrixType, false> inverse() const
{ return m_matrix.inverse(); }
protected:
};
#ifdef EIGEN_QT_SUPPORT
/** Initialises \c *this from a QMatrix assuming the dimension is 2.
*/
template<typename Scalar, int Dim>
Transform<Scalar,Dim>::Transform(const QMatrix& other)
{
*this = other;
}
/** Set \c *this from a QMatrix assuming the dimension is 2.
*/
template<typename Scalar, int Dim>
Transform<Scalar,Dim>& Transform<Scalar,Dim>::operator=(const QMatrix& other)
{
EIGEN_STATIC_ASSERT(Dim==2, you_did_a_programming_error);
m_matrix << other.m11(), other.m21(), other.dx(),
other.m12(), other.m22(), other.dy(),
0, 0, 1;
return *this;
}
/** \returns a QMatrix from \c *this assuming the dimension is 2.
*/
template<typename Scalar, int Dim>
QMatrix Transform<Scalar,Dim>::toQMatrix(void) const
{
EIGEN_STATIC_ASSERT(Dim==2, you_did_a_programming_error);
return QMatrix( other.coeffRef(0,0), other.coeffRef(1,0),
other.coeffRef(0,1), other.coeffRef(1,1),
other.coeffRef(0,2), other.coeffRef(1,2),
}
#endif
template<typename Scalar, int Dim>
template<typename OtherDerived>
const typename Transform<Scalar,Dim>::template ei_transform_product_impl<OtherDerived>::ResultType
Transform<Scalar,Dim>::operator*(const MatrixBase<OtherDerived> &other) const
{
return ei_transform_product_impl<OtherDerived>::run(*this,other.derived());
}
/** Applies on the right the non uniform scale transformation represented
* by the vector \a other to \c *this and returns a reference to \c *this.
* \sa prescale()
*/
template<typename Scalar, int Dim>
template<typename OtherDerived>
Transform<Scalar,Dim>&
Transform<Scalar,Dim>::scale(const MatrixBase<OtherDerived> &other)
{
EIGEN_STATIC_ASSERT(int(OtherDerived::IsVectorAtCompileTime)
&& int(OtherDerived::SizeAtCompileTime)==int(Dim), you_did_a_programming_error);
affine() = (affine() * other.asDiagonal()).lazy();
return *this;
}
/** Applies on the left the non uniform scale transformation represented
* by the vector \a other to \c *this and returns a reference to \c *this.
* \sa scale()
*/
template<typename Scalar, int Dim>
template<typename OtherDerived>
Transform<Scalar,Dim>&
Transform<Scalar,Dim>::prescale(const MatrixBase<OtherDerived> &other)
{
EIGEN_STATIC_ASSERT(int(OtherDerived::IsVectorAtCompileTime)
&& int(OtherDerived::SizeAtCompileTime)==int(Dim), you_did_a_programming_error);
m_matrix.template block<Dim,HDim>(0,0) = (other.asDiagonal() * m_matrix.template block<Dim,HDim>(0,0)).lazy();
return *this;
}
/** Applies on the right the translation matrix represented by the vector \a other
* to \c *this and returns a reference to \c *this.
* \sa pretranslate()
*/
template<typename Scalar, int Dim>
template<typename OtherDerived>
Transform<Scalar,Dim>&
Transform<Scalar,Dim>::translate(const MatrixBase<OtherDerived> &other)
{
EIGEN_STATIC_ASSERT(int(OtherDerived::IsVectorAtCompileTime)
&& int(OtherDerived::SizeAtCompileTime)==int(Dim), you_did_a_programming_error);
translation() += affine() * other;
return *this;
}
/** Applies on the left the translation matrix represented by the vector \a other
* to \c *this and returns a reference to \c *this.
* \sa translate()
*/
template<typename Scalar, int Dim>
template<typename OtherDerived>
Transform<Scalar,Dim>&
Transform<Scalar,Dim>::pretranslate(const MatrixBase<OtherDerived> &other)
{
EIGEN_STATIC_ASSERT(int(OtherDerived::IsVectorAtCompileTime)
&& int(OtherDerived::SizeAtCompileTime)==int(Dim), you_did_a_programming_error);
translation() += other;
return *this;
}
/** Applies on the right the rotation represented by the rotation \a rotation
* to \c *this and returns a reference to \c *this.
*
* The template parameter \a RotationType is the type of the rotation which
* must be registered by ToRotationMatrix<>.
*
* Natively supported types includes:
* - any scalar (2D),
* - a Dim x Dim matrix expression,
* - Quaternion (3D),
* - AngleAxis (3D)
*
* This mechanism is easily extendable to support user types such as Euler angles,
* or a pair of Quaternion for 4D rotations.
*
* \sa rotate(Scalar), class Quaternion, class AngleAxis, class ToRotationMatrix, prerotate(RotationType)
*/
template<typename Scalar, int Dim>
template<typename RotationType>
Transform<Scalar,Dim>&
Transform<Scalar,Dim>::rotate(const RotationType& rotation)
{
affine() *= ToRotationMatrix<Scalar,Dim,RotationType>::convert(rotation);
return *this;
}
/** Applies on the left the rotation represented by the rotation \a rotation
* to \c *this and returns a reference to \c *this.
*
* See rotate(RotationType) for further details.
*
* \sa rotate(RotationType), rotate(Scalar)
*/
template<typename Scalar, int Dim>
template<typename RotationType>
Transform<Scalar,Dim>&
Transform<Scalar,Dim>::prerotate(const RotationType& rotation)
{
m_matrix.template block<Dim,HDim>(0,0) = ToRotationMatrix<Scalar,Dim,RotationType>::convert(rotation)
* m_matrix.template block<Dim,HDim>(0,0);
return *this;
}
/** Applies on the right the shear transformation represented
* by the vector \a other to \c *this and returns a reference to \c *this.
* \warning 2D only.
* \sa preshear()
*/
template<typename Scalar, int Dim>
template<typename OtherDerived>
Transform<Scalar,Dim>&
Transform<Scalar,Dim>::shear(Scalar sx, Scalar sy)
{
EIGEN_STATIC_ASSERT(int(OtherDerived::IsVectorAtCompileTime)
&& int(OtherDerived::SizeAtCompileTime)==int(Dim) && int(Dim)==2, you_did_a_programming_error);
VectorType tmp = affine().col(0)*sy + affine().col(1);
affine() << affine().col(0) + affine().col(1)*sx, tmp;
return *this;
}
/** Applies on the left the shear transformation represented
* by the vector \a other to \c *this and returns a reference to \c *this.
* \warning 2D only.
* \sa shear()
*/
template<typename Scalar, int Dim>
template<typename OtherDerived>
Transform<Scalar,Dim>&
Transform<Scalar,Dim>::preshear(Scalar sx, Scalar sy)
{
EIGEN_STATIC_ASSERT(int(OtherDerived::IsVectorAtCompileTime)
&& int(OtherDerived::SizeAtCompileTime)==int(Dim), you_did_a_programming_error);
m_matrix.template block<Dim,HDim>(0,0) = AffineMatrixType(1, sx, sy, 1) * m_matrix.template block<Dim,HDim>(0,0);
return *this;
}
/** \returns the rotation part of the transformation using a QR decomposition.
* \sa extractRotationNoShear()
*/
template<typename Scalar, int Dim>
typename Transform<Scalar,Dim>::AffineMatrixType
Transform<Scalar,Dim>::extractRotation() const
{
return affine().qr().matrixQ();
}
/** \returns the rotation part of the transformation assuming no shear in
* the affine part.
* \sa extractRotation()
*/
template<typename Scalar, int Dim>
typename Transform<Scalar,Dim>::AffineMatrixType
Transform<Scalar,Dim>::extractRotationNoShear() const
{
return affine().cwiseAbs2()
.verticalRedux(ei_scalar_sum_op<Scalar>()).cwiseSqrt();
}
/** Convenient method to set \c *this from a position, orientation and scale
* of a 3D object.
*/
template<typename Scalar, int Dim>
template<typename PositionDerived, typename OrientationType, typename ScaleDerived>
Transform<Scalar,Dim>&
Transform<Scalar,Dim>::fromPositionOrientationScale(const MatrixBase<PositionDerived> &position,
const OrientationType& orientation, const MatrixBase<ScaleDerived> &scale)
{
affine() = ToRotationMatrix<Scalar,Dim,OrientationType>::convert(orientation);
translation() = position;
m_matrix(Dim,Dim) = 1.;
m_matrix.template block<1,Dim>(Dim,0).setZero();
affine() *= scale.asDiagonal();
return *this;
}
#endif // EIGEN_TRANSFORM_H